三维凸多面体的结合

B. Aronov, M. Sharir, Boaz Tagansky
{"title":"三维凸多面体的结合","authors":"B. Aronov, M. Sharir, Boaz Tagansky","doi":"10.1109/SFCS.1993.366835","DOIUrl":null,"url":null,"abstract":"We show that the number of vertices, edges, and faces of the union of k convex polyhedra in 3-space, having a total of n faces, is O(k/sup 3/+knlog/sup 2/ k). This bound is almost tight in the worst case. We also describe a rather simple randomized incremental algorithm for computing the boundary of the union in O(k/sup 3/+knlog/sup 3/ k) expected time.<<ETX>>","PeriodicalId":253303,"journal":{"name":"Proceedings of 1993 IEEE 34th Annual Foundations of Computer Science","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"72","resultStr":"{\"title\":\"The union of convex polyhedra in three dimensions\",\"authors\":\"B. Aronov, M. Sharir, Boaz Tagansky\",\"doi\":\"10.1109/SFCS.1993.366835\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that the number of vertices, edges, and faces of the union of k convex polyhedra in 3-space, having a total of n faces, is O(k/sup 3/+knlog/sup 2/ k). This bound is almost tight in the worst case. We also describe a rather simple randomized incremental algorithm for computing the boundary of the union in O(k/sup 3/+knlog/sup 3/ k) expected time.<<ETX>>\",\"PeriodicalId\":253303,\"journal\":{\"name\":\"Proceedings of 1993 IEEE 34th Annual Foundations of Computer Science\",\"volume\":\"50 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1993-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"72\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 1993 IEEE 34th Annual Foundations of Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SFCS.1993.366835\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1993 IEEE 34th Annual Foundations of Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SFCS.1993.366835","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 72

摘要

我们证明了三维空间中k个凸多面体的顶点、边和面的数量,总共有n个面,是O(k/sup 3/+knlog/sup 2/ k),这个界限在最坏的情况下几乎是紧的。我们还描述了一种相当简单的随机增量算法,用于在O(k/sup 3/+knlog/sup 3/ k)期望时间内计算并集的边界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The union of convex polyhedra in three dimensions
We show that the number of vertices, edges, and faces of the union of k convex polyhedra in 3-space, having a total of n faces, is O(k/sup 3/+knlog/sup 2/ k). This bound is almost tight in the worst case. We also describe a rather simple randomized incremental algorithm for computing the boundary of the union in O(k/sup 3/+knlog/sup 3/ k) expected time.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信