离散时间二阶精确解的计算与应用

Jinill Kim, Sunghyun Kim, E. Schaumburg, C. Sims
{"title":"离散时间二阶精确解的计算与应用","authors":"Jinill Kim, Sunghyun Kim, E. Schaumburg, C. Sims","doi":"10.17016/FEDS.2003.61","DOIUrl":null,"url":null,"abstract":"We describe an algorithm for calculating second order approximations to the solutions to nonlinear stochastic rational expectation models. The paper also explains methods for using such an approximate solution to generate forecasts, simulated time paths for the model, and evaluations of expected welfare differences across different versions of a model. The paper gives conditions for local validity of the approximation that allow for disturbance distributions with unbounded support and allow for non-stationarity of the solution process.","PeriodicalId":162026,"journal":{"name":"Levine's Bibliography","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"106","resultStr":"{\"title\":\"Calculating and Using Second Order Accurate Solutions of Discrete Time\",\"authors\":\"Jinill Kim, Sunghyun Kim, E. Schaumburg, C. Sims\",\"doi\":\"10.17016/FEDS.2003.61\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We describe an algorithm for calculating second order approximations to the solutions to nonlinear stochastic rational expectation models. The paper also explains methods for using such an approximate solution to generate forecasts, simulated time paths for the model, and evaluations of expected welfare differences across different versions of a model. The paper gives conditions for local validity of the approximation that allow for disturbance distributions with unbounded support and allow for non-stationarity of the solution process.\",\"PeriodicalId\":162026,\"journal\":{\"name\":\"Levine's Bibliography\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"106\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Levine's Bibliography\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17016/FEDS.2003.61\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Levine's Bibliography","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17016/FEDS.2003.61","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 106

摘要

我们描述了一种计算非线性随机有理期望模型解的二阶近似的算法。本文还解释了使用这种近似解来生成预测、模拟模型的时间路径以及评估不同版本模型之间的预期福利差异的方法。本文给出了允许具有无界支持的扰动分布和允许求解过程的非平稳性的近似的局部有效性条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Calculating and Using Second Order Accurate Solutions of Discrete Time
We describe an algorithm for calculating second order approximations to the solutions to nonlinear stochastic rational expectation models. The paper also explains methods for using such an approximate solution to generate forecasts, simulated time paths for the model, and evaluations of expected welfare differences across different versions of a model. The paper gives conditions for local validity of the approximation that allow for disturbance distributions with unbounded support and allow for non-stationarity of the solution process.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信