基于多幅静止图像的行人方向估计

Hiroaki Shimizu, T. Poggio
{"title":"基于多幅静止图像的行人方向估计","authors":"Hiroaki Shimizu, T. Poggio","doi":"10.1109/IVS.2004.1336451","DOIUrl":null,"url":null,"abstract":"The capability of estimating the walking direction of pedestrian would be useful in many applications such as those involving autonomous vehicles. We introduce an approach for estimating the walking direction of pedestrian from images, based on learning the correct classification of a still image by using SVMs. We find that the performance of the system can be improved by classifying each image of a walking sequence and combining the outputs of the classifier. Experiments were performed to evaluate our system and estimate the trade-off between number of images in walking sequences and performance.","PeriodicalId":296386,"journal":{"name":"IEEE Intelligent Vehicles Symposium, 2004","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"94","resultStr":"{\"title\":\"Direction estimation of pedestrian from multiple still images\",\"authors\":\"Hiroaki Shimizu, T. Poggio\",\"doi\":\"10.1109/IVS.2004.1336451\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The capability of estimating the walking direction of pedestrian would be useful in many applications such as those involving autonomous vehicles. We introduce an approach for estimating the walking direction of pedestrian from images, based on learning the correct classification of a still image by using SVMs. We find that the performance of the system can be improved by classifying each image of a walking sequence and combining the outputs of the classifier. Experiments were performed to evaluate our system and estimate the trade-off between number of images in walking sequences and performance.\",\"PeriodicalId\":296386,\"journal\":{\"name\":\"IEEE Intelligent Vehicles Symposium, 2004\",\"volume\":\"70 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"94\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Intelligent Vehicles Symposium, 2004\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IVS.2004.1336451\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Intelligent Vehicles Symposium, 2004","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVS.2004.1336451","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 94

摘要

估计行人行走方向的能力在许多应用中都很有用,比如涉及自动驾驶汽车的应用。介绍了一种基于svm学习静止图像的正确分类,从图像中估计行人行走方向的方法。我们发现,通过对行走序列的每个图像进行分类并结合分类器的输出,可以提高系统的性能。通过实验来评估我们的系统,并估计行走序列中图像数量与性能之间的权衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Direction estimation of pedestrian from multiple still images
The capability of estimating the walking direction of pedestrian would be useful in many applications such as those involving autonomous vehicles. We introduce an approach for estimating the walking direction of pedestrian from images, based on learning the correct classification of a still image by using SVMs. We find that the performance of the system can be improved by classifying each image of a walking sequence and combining the outputs of the classifier. Experiments were performed to evaluate our system and estimate the trade-off between number of images in walking sequences and performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信