M. Michalewicz, T. Lian, Lim Seng, Jonathan Low, D. Southwell, Jason Gunthorpe, Gabriel Noaje, Dominic Chien, Yves Poppe, Jakub Chrzeszczyk, Andrew Howard, Tin Wee Tan, Sing-Wu Liou
{"title":"InfiniCortex:现在和未来的特邀论文","authors":"M. Michalewicz, T. Lian, Lim Seng, Jonathan Low, D. Southwell, Jason Gunthorpe, Gabriel Noaje, Dominic Chien, Yves Poppe, Jakub Chrzeszczyk, Andrew Howard, Tin Wee Tan, Sing-Wu Liou","doi":"10.1145/2903150.2912887","DOIUrl":null,"url":null,"abstract":"Commencing in June 2014, A*STAR Computational Resource Centre (A*CRC) team in Singapore, together with dozens of partners world-wide, have been building the InfiniCortex. Four concepts are integrated together to realise InfiniCortex: i) High bandwidth (~ 10 to 100Gbps) intercontinental connectivity between four continents: Asia, North America, Australia and Europe; ii) InfiniBand extension technology supporting transcontinental distances using Obsidian's Longbow range extenders; iii) Connecting separate InfiniBand sub-nets with different net topologies to create a single computational resource: Galaxy of Supercomputers [10] iv) Running workflows and applications on such a distributed computational infrastructure. We have successfully demonstrated InfiniCortex prototypes at SC14 and SC15 conferences. The infrastructure comprised of computing resources residing at multiple locations in Singapore, Japan, Australia, USA, Canada, France and Poland. Various concurrent applications, including workflows, I/O heavy applications enabled with ADIOS system, Extempore real-time interactive applications, and in-situ realtime visualisations were demonstrated. In this paper we briefly report on basic ideas behind Infini-Cortex construct, our recent successes and some ideas about further growth and extension of this project.","PeriodicalId":226569,"journal":{"name":"Proceedings of the ACM International Conference on Computing Frontiers","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"InfiniCortex: present and future invited paper\",\"authors\":\"M. Michalewicz, T. Lian, Lim Seng, Jonathan Low, D. Southwell, Jason Gunthorpe, Gabriel Noaje, Dominic Chien, Yves Poppe, Jakub Chrzeszczyk, Andrew Howard, Tin Wee Tan, Sing-Wu Liou\",\"doi\":\"10.1145/2903150.2912887\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Commencing in June 2014, A*STAR Computational Resource Centre (A*CRC) team in Singapore, together with dozens of partners world-wide, have been building the InfiniCortex. Four concepts are integrated together to realise InfiniCortex: i) High bandwidth (~ 10 to 100Gbps) intercontinental connectivity between four continents: Asia, North America, Australia and Europe; ii) InfiniBand extension technology supporting transcontinental distances using Obsidian's Longbow range extenders; iii) Connecting separate InfiniBand sub-nets with different net topologies to create a single computational resource: Galaxy of Supercomputers [10] iv) Running workflows and applications on such a distributed computational infrastructure. We have successfully demonstrated InfiniCortex prototypes at SC14 and SC15 conferences. The infrastructure comprised of computing resources residing at multiple locations in Singapore, Japan, Australia, USA, Canada, France and Poland. Various concurrent applications, including workflows, I/O heavy applications enabled with ADIOS system, Extempore real-time interactive applications, and in-situ realtime visualisations were demonstrated. In this paper we briefly report on basic ideas behind Infini-Cortex construct, our recent successes and some ideas about further growth and extension of this project.\",\"PeriodicalId\":226569,\"journal\":{\"name\":\"Proceedings of the ACM International Conference on Computing Frontiers\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ACM International Conference on Computing Frontiers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2903150.2912887\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM International Conference on Computing Frontiers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2903150.2912887","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
摘要
从2014年6月开始,新加坡A*STAR计算资源中心(A*CRC)团队与全球数十个合作伙伴一起,一直在构建InfiniCortex。InfiniCortex集成了四个概念:i)亚洲、北美、澳大利亚和欧洲四大洲之间的高带宽(~ 10至100Gbps)洲际连接;ii)使用Obsidian的长弓范围扩展器支持跨大陆距离的InfiniBand扩展技术;iii)连接具有不同网络拓扑结构的独立InfiniBand子网,以创建单个计算资源:Galaxy of Supercomputers [10] iv)在这样一个分布式计算基础设施上运行工作流和应用程序。我们已经在SC14和SC15会议上成功展示了InfiniCortex原型。基础设施由驻留在新加坡、日本、澳大利亚、美国、加拿大、法国和波兰的多个位置的计算资源组成。演示了各种并发应用程序,包括工作流、启用ADIOS系统的大量I/O应用程序、Extempore实时交互应用程序和现场实时可视化。在本文中,我们简要介绍了Infini-Cortex结构背后的基本思想,我们最近的成功以及对该项目进一步发展和扩展的一些想法。
Commencing in June 2014, A*STAR Computational Resource Centre (A*CRC) team in Singapore, together with dozens of partners world-wide, have been building the InfiniCortex. Four concepts are integrated together to realise InfiniCortex: i) High bandwidth (~ 10 to 100Gbps) intercontinental connectivity between four continents: Asia, North America, Australia and Europe; ii) InfiniBand extension technology supporting transcontinental distances using Obsidian's Longbow range extenders; iii) Connecting separate InfiniBand sub-nets with different net topologies to create a single computational resource: Galaxy of Supercomputers [10] iv) Running workflows and applications on such a distributed computational infrastructure. We have successfully demonstrated InfiniCortex prototypes at SC14 and SC15 conferences. The infrastructure comprised of computing resources residing at multiple locations in Singapore, Japan, Australia, USA, Canada, France and Poland. Various concurrent applications, including workflows, I/O heavy applications enabled with ADIOS system, Extempore real-time interactive applications, and in-situ realtime visualisations were demonstrated. In this paper we briefly report on basic ideas behind Infini-Cortex construct, our recent successes and some ideas about further growth and extension of this project.