液晶仿真软件在现代高性能计算平台上的高效实现

I. Afanasyev, D. I. Lichmanov, V. Rudyak, V. Voevodin
{"title":"液晶仿真软件在现代高性能计算平台上的高效实现","authors":"I. Afanasyev, D. I. Lichmanov, V. Rudyak, V. Voevodin","doi":"10.14529/jsfi210306","DOIUrl":null,"url":null,"abstract":"In this paper we demonstrate the process of efficient porting a software package for Markov chain Monte Carlo (MCMC) simulations on a finite cubic lattice on multiple modern architectures: Pascal, Volta and Turing NVIDIA GPUs, NEC SX-Aurora TSUBASA vector engines and Intel Xeon Gold processors. In the studied software, MCMC methodology is used for simulations of liquid crystal structures, but it can be as well employed in a wide range of problems of mathematical physics and numerical methods. The main goals of this work are to determine the best software optimization strategy for this class of algorithms and to examine the speed and the efficiency of such simulations on modern HPC platforms. We evaluate the effects of various optimizations, such as using more suitable memory access patterns, multitasking for efficient utilization of massive parallelism on the target architectures, improved cache hit-rates, parallel workload balancing, etc. We perform a detailed performance analysis for each target platform using software tools such as nvprof, Ftrace and VTune. On this basis, we evaluate and compare the efficiency of the developed computational kernels on different platforms and subsequently rank these platforms by their performance. The results show that NVIDIA GPU and NEC SX-Aurora TSUBASA platforms, although at first glance seem very different, require similar optimization approaches in many cases due to similarities in data processing principles.","PeriodicalId":338883,"journal":{"name":"Supercomput. Front. Innov.","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient Implementation of Liquid Crystal Simulation Software on Modern HPC Platforms\",\"authors\":\"I. Afanasyev, D. I. Lichmanov, V. Rudyak, V. Voevodin\",\"doi\":\"10.14529/jsfi210306\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we demonstrate the process of efficient porting a software package for Markov chain Monte Carlo (MCMC) simulations on a finite cubic lattice on multiple modern architectures: Pascal, Volta and Turing NVIDIA GPUs, NEC SX-Aurora TSUBASA vector engines and Intel Xeon Gold processors. In the studied software, MCMC methodology is used for simulations of liquid crystal structures, but it can be as well employed in a wide range of problems of mathematical physics and numerical methods. The main goals of this work are to determine the best software optimization strategy for this class of algorithms and to examine the speed and the efficiency of such simulations on modern HPC platforms. We evaluate the effects of various optimizations, such as using more suitable memory access patterns, multitasking for efficient utilization of massive parallelism on the target architectures, improved cache hit-rates, parallel workload balancing, etc. We perform a detailed performance analysis for each target platform using software tools such as nvprof, Ftrace and VTune. On this basis, we evaluate and compare the efficiency of the developed computational kernels on different platforms and subsequently rank these platforms by their performance. The results show that NVIDIA GPU and NEC SX-Aurora TSUBASA platforms, although at first glance seem very different, require similar optimization approaches in many cases due to similarities in data processing principles.\",\"PeriodicalId\":338883,\"journal\":{\"name\":\"Supercomput. Front. Innov.\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Supercomput. Front. Innov.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14529/jsfi210306\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Supercomput. Front. Innov.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14529/jsfi210306","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们演示了在多种现代架构(Pascal, Volta和Turing NVIDIA gpu, NEC SX-Aurora TSUBASA矢量引擎和Intel Xeon Gold处理器)上有效移植用于有限立方格上马尔可夫链蒙特卡罗(MCMC)模拟的软件包的过程。在所研究的软件中,MCMC方法用于液晶结构的模拟,但它也可以用于广泛的数学物理和数值方法问题。这项工作的主要目标是确定这类算法的最佳软件优化策略,并检查现代HPC平台上此类模拟的速度和效率。我们评估了各种优化的效果,例如使用更合适的内存访问模式、多任务处理以有效利用目标架构上的大量并行性、改进的缓存命中率、并行工作负载平衡等。我们使用nvprof、Ftrace和VTune等软件工具对每个目标平台进行详细的性能分析。在此基础上,我们评估和比较了不同平台上开发的计算内核的效率,并根据它们的性能对这些平台进行排名。结果表明,NVIDIA GPU和NEC SX-Aurora TSUBASA平台虽然乍一看非常不同,但由于数据处理原理的相似性,在许多情况下需要相似的优化方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient Implementation of Liquid Crystal Simulation Software on Modern HPC Platforms
In this paper we demonstrate the process of efficient porting a software package for Markov chain Monte Carlo (MCMC) simulations on a finite cubic lattice on multiple modern architectures: Pascal, Volta and Turing NVIDIA GPUs, NEC SX-Aurora TSUBASA vector engines and Intel Xeon Gold processors. In the studied software, MCMC methodology is used for simulations of liquid crystal structures, but it can be as well employed in a wide range of problems of mathematical physics and numerical methods. The main goals of this work are to determine the best software optimization strategy for this class of algorithms and to examine the speed and the efficiency of such simulations on modern HPC platforms. We evaluate the effects of various optimizations, such as using more suitable memory access patterns, multitasking for efficient utilization of massive parallelism on the target architectures, improved cache hit-rates, parallel workload balancing, etc. We perform a detailed performance analysis for each target platform using software tools such as nvprof, Ftrace and VTune. On this basis, we evaluate and compare the efficiency of the developed computational kernels on different platforms and subsequently rank these platforms by their performance. The results show that NVIDIA GPU and NEC SX-Aurora TSUBASA platforms, although at first glance seem very different, require similar optimization approaches in many cases due to similarities in data processing principles.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信