使用普通图形处理器在2D阶段展开中获得35倍加速

P. Karasev, D. Campbell, M. Richards
{"title":"使用普通图形处理器在2D阶段展开中获得35倍加速","authors":"P. Karasev, D. Campbell, M. Richards","doi":"10.1109/RADAR.2007.374282","DOIUrl":null,"url":null,"abstract":"Graphics processing units (GPUs) are a powerful tool for numerical computation. The GPU architecture and computational model are uniquely designed for high-resolution high-speed grid-based calculations. This capability can be utilized to accelerate certain classes of compute-intensive radar signal processing algorithms. Characteristics of a problem well-suited for computation on a GPU include high levels of data parallelism, low control logic, uniform boundary conditions, and well-defined input and output. We describe the implementation of two-dimensional multigrid least-squares weighted phase unwrapping on a GPU and demonstrate a large speedup over C and MATLAB implementations. Details of the GPU computation are provided. Background information on the GPU architecture and its applicability to general-purpose computation is discussed.","PeriodicalId":367078,"journal":{"name":"2007 IEEE Radar Conference","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"Obtaining a 35x Speedup in 2D Phase Unwrapping Using Commodity Graphics Processors\",\"authors\":\"P. Karasev, D. Campbell, M. Richards\",\"doi\":\"10.1109/RADAR.2007.374282\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Graphics processing units (GPUs) are a powerful tool for numerical computation. The GPU architecture and computational model are uniquely designed for high-resolution high-speed grid-based calculations. This capability can be utilized to accelerate certain classes of compute-intensive radar signal processing algorithms. Characteristics of a problem well-suited for computation on a GPU include high levels of data parallelism, low control logic, uniform boundary conditions, and well-defined input and output. We describe the implementation of two-dimensional multigrid least-squares weighted phase unwrapping on a GPU and demonstrate a large speedup over C and MATLAB implementations. Details of the GPU computation are provided. Background information on the GPU architecture and its applicability to general-purpose computation is discussed.\",\"PeriodicalId\":367078,\"journal\":{\"name\":\"2007 IEEE Radar Conference\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE Radar Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RADAR.2007.374282\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Radar Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RADAR.2007.374282","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

摘要

图形处理单元(gpu)是一种强大的数值计算工具。GPU架构和计算模型专为高分辨率高速网格计算而设计。这种能力可用于加速某些类型的计算密集型雷达信号处理算法。适合在GPU上计算的问题的特征包括高水平的数据并行性、低控制逻辑、统一的边界条件和定义良好的输入和输出。我们描述了二维多网格最小二乘加权相位展开在GPU上的实现,并演示了与C和MATLAB实现相比的大幅加速。提供了GPU计算的细节。讨论了GPU架构的背景信息及其在通用计算中的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Obtaining a 35x Speedup in 2D Phase Unwrapping Using Commodity Graphics Processors
Graphics processing units (GPUs) are a powerful tool for numerical computation. The GPU architecture and computational model are uniquely designed for high-resolution high-speed grid-based calculations. This capability can be utilized to accelerate certain classes of compute-intensive radar signal processing algorithms. Characteristics of a problem well-suited for computation on a GPU include high levels of data parallelism, low control logic, uniform boundary conditions, and well-defined input and output. We describe the implementation of two-dimensional multigrid least-squares weighted phase unwrapping on a GPU and demonstrate a large speedup over C and MATLAB implementations. Details of the GPU computation are provided. Background information on the GPU architecture and its applicability to general-purpose computation is discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信