领域概念层次结构的自动构建

Sun Qiao, Z. Chunhui, Chen Zhibo
{"title":"领域概念层次结构的自动构建","authors":"Sun Qiao, Z. Chunhui, Chen Zhibo","doi":"10.1109/CYBERC.2010.85","DOIUrl":null,"url":null,"abstract":"A general automatic domain concept hierarchy construction procedure is presented in this paper. This is a domain independent construct a domain concept hierarchy from a domain corpus . The construction procedure mainly includes domain terminology extraction, word sense disambiguation, similarity computation, hierarchy construction and subsumption relation detection. All extracted candidate terms are ranked first, then one can select the top terms as domain terminologies. Frequency ratio and entropy of a word are considered to rank candidate terms. Relations between terms are taken into account for words in WordNet, while distributional similarity is used to compute similarity between words outside WordNet. Experiments on two domain corpus show that the proposed procedure is feasible and can get reasonable concept hierarchy.","PeriodicalId":315132,"journal":{"name":"2010 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Automatic Construction of Domain Concept Hierarchy\",\"authors\":\"Sun Qiao, Z. Chunhui, Chen Zhibo\",\"doi\":\"10.1109/CYBERC.2010.85\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A general automatic domain concept hierarchy construction procedure is presented in this paper. This is a domain independent construct a domain concept hierarchy from a domain corpus . The construction procedure mainly includes domain terminology extraction, word sense disambiguation, similarity computation, hierarchy construction and subsumption relation detection. All extracted candidate terms are ranked first, then one can select the top terms as domain terminologies. Frequency ratio and entropy of a word are considered to rank candidate terms. Relations between terms are taken into account for words in WordNet, while distributional similarity is used to compute similarity between words outside WordNet. Experiments on two domain corpus show that the proposed procedure is feasible and can get reasonable concept hierarchy.\",\"PeriodicalId\":315132,\"journal\":{\"name\":\"2010 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CYBERC.2010.85\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CYBERC.2010.85","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

提出了一种通用的自动领域概念层次构造方法。这是一个独立于领域的从领域语料库中构造一个领域概念层次结构的方法。构建过程主要包括领域术语提取、词义消歧、相似度计算、层次结构构建和包容关系检测。所有提取的候选术语被排在第一位,然后可以选择最前面的术语作为领域术语。考虑词的频率比和熵对候选词进行排序。WordNet中考虑词之间的关系,而分布相似度用于计算WordNet外词之间的相似度。在两个领域语料库上的实验表明,该方法是可行的,可以得到合理的概念层次。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatic Construction of Domain Concept Hierarchy
A general automatic domain concept hierarchy construction procedure is presented in this paper. This is a domain independent construct a domain concept hierarchy from a domain corpus . The construction procedure mainly includes domain terminology extraction, word sense disambiguation, similarity computation, hierarchy construction and subsumption relation detection. All extracted candidate terms are ranked first, then one can select the top terms as domain terminologies. Frequency ratio and entropy of a word are considered to rank candidate terms. Relations between terms are taken into account for words in WordNet, while distributional similarity is used to compute similarity between words outside WordNet. Experiments on two domain corpus show that the proposed procedure is feasible and can get reasonable concept hierarchy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信