基于统计原理的mirna -靶基因相互作用检测方法

Nai-Wen Chang, Hong-Jie Dai, Yu-Lun Hsieh, W. Hsu
{"title":"基于统计原理的mirna -靶基因相互作用检测方法","authors":"Nai-Wen Chang, Hong-Jie Dai, Yu-Lun Hsieh, W. Hsu","doi":"10.1109/BIBE.2016.60","DOIUrl":null,"url":null,"abstract":"MicroRNAs (miRNAs) are small non-coding RNAs of approximately 23 nucleotides, which negatively regulate the gene expression at the post-transcriptional level. miRNAs have been considered as good candidates for early detection or prognosis biomarkers for various diseases. Validated miRNA targets are usually reported in literature, necessitating researchers to manually screen through the related literature to keep up-to-date with novel findings. However, the amount of miRNA-related literature is increasing rapidly which makes it difficult for researchers to keep up to date. This study develops a text mining pipeline based on the statistical principle-based approach (SPBA) to detect MiRNA-Target Interactions (MTIs) mentioned in literatures. SPBA uses a collection of principles to represent linguistic concepts or rules used by human for describing MTIs. Each principle is composed of a collection of slots, which can be automatically learned from training data by merging the labeled slot sequences into more representative principles through a dominating set algorithm. Followed by a partial matching algorithm, the proposed approach can successfully recognize miRNA mentions and extract their MTIs in articles with a promising F-score of 98.8% and an accuracy of 71.43%.","PeriodicalId":377504,"journal":{"name":"2016 IEEE 16th International Conference on Bioinformatics and Bioengineering (BIBE)","volume":"19 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Statistical Principle-Based Approach for Detecting miRNA-Target Gene Interaction Articles\",\"authors\":\"Nai-Wen Chang, Hong-Jie Dai, Yu-Lun Hsieh, W. Hsu\",\"doi\":\"10.1109/BIBE.2016.60\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"MicroRNAs (miRNAs) are small non-coding RNAs of approximately 23 nucleotides, which negatively regulate the gene expression at the post-transcriptional level. miRNAs have been considered as good candidates for early detection or prognosis biomarkers for various diseases. Validated miRNA targets are usually reported in literature, necessitating researchers to manually screen through the related literature to keep up-to-date with novel findings. However, the amount of miRNA-related literature is increasing rapidly which makes it difficult for researchers to keep up to date. This study develops a text mining pipeline based on the statistical principle-based approach (SPBA) to detect MiRNA-Target Interactions (MTIs) mentioned in literatures. SPBA uses a collection of principles to represent linguistic concepts or rules used by human for describing MTIs. Each principle is composed of a collection of slots, which can be automatically learned from training data by merging the labeled slot sequences into more representative principles through a dominating set algorithm. Followed by a partial matching algorithm, the proposed approach can successfully recognize miRNA mentions and extract their MTIs in articles with a promising F-score of 98.8% and an accuracy of 71.43%.\",\"PeriodicalId\":377504,\"journal\":{\"name\":\"2016 IEEE 16th International Conference on Bioinformatics and Bioengineering (BIBE)\",\"volume\":\"19 2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE 16th International Conference on Bioinformatics and Bioengineering (BIBE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIBE.2016.60\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 16th International Conference on Bioinformatics and Bioengineering (BIBE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBE.2016.60","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

MicroRNAs (miRNAs)是大约23个核苷酸的小非编码rna,在转录后水平负调控基因表达。mirna已被认为是各种疾病早期检测或预后的良好候选生物标志物。经过验证的miRNA靶点通常在文献中报道,因此研究人员需要手动筛选相关文献以保持最新的新发现。然而,与mirna相关的文献数量正在迅速增加,这使得研究人员很难跟上时代的步伐。本研究开发了一种基于统计原理的方法(SPBA)的文本挖掘管道来检测文献中提到的MiRNA-Target相互作用(MTIs)。SPBA使用一组原则来表示人类用于描述mti的语言概念或规则。每个原理由一个槽的集合组成,通过支配集算法将标记的槽序列合并成更有代表性的原理,可以从训练数据中自动学习。通过部分匹配算法,该方法可以成功识别文章中的miRNA提及并提取其mti, f值为98.8%,准确率为71.43%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Statistical Principle-Based Approach for Detecting miRNA-Target Gene Interaction Articles
MicroRNAs (miRNAs) are small non-coding RNAs of approximately 23 nucleotides, which negatively regulate the gene expression at the post-transcriptional level. miRNAs have been considered as good candidates for early detection or prognosis biomarkers for various diseases. Validated miRNA targets are usually reported in literature, necessitating researchers to manually screen through the related literature to keep up-to-date with novel findings. However, the amount of miRNA-related literature is increasing rapidly which makes it difficult for researchers to keep up to date. This study develops a text mining pipeline based on the statistical principle-based approach (SPBA) to detect MiRNA-Target Interactions (MTIs) mentioned in literatures. SPBA uses a collection of principles to represent linguistic concepts or rules used by human for describing MTIs. Each principle is composed of a collection of slots, which can be automatically learned from training data by merging the labeled slot sequences into more representative principles through a dominating set algorithm. Followed by a partial matching algorithm, the proposed approach can successfully recognize miRNA mentions and extract their MTIs in articles with a promising F-score of 98.8% and an accuracy of 71.43%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信