基于多模态线索的跨模态视频文本检索联合嵌入学习

Niluthpol Chowdhury Mithun, Juncheng Billy Li, Florian Metze, A. Roy-Chowdhury
{"title":"基于多模态线索的跨模态视频文本检索联合嵌入学习","authors":"Niluthpol Chowdhury Mithun, Juncheng Billy Li, Florian Metze, A. Roy-Chowdhury","doi":"10.1145/3206025.3206064","DOIUrl":null,"url":null,"abstract":"Constructing a joint representation invariant across different modalities (e.g., video, language) is of significant importance in many multimedia applications. While there are a number of recent successes in developing effective image-text retrieval methods by learning joint representations, the video-text retrieval task, however, has not been explored to its fullest extent. In this paper, we study how to effectively utilize available multimodal cues from videos for the cross-modal video-text retrieval task. Based on our analysis, we propose a novel framework that simultaneously utilizes multi-modal features (different visual characteristics, audio inputs, and text) by a fusion strategy for efficient retrieval. Furthermore, we explore several loss functions in training the embedding and propose a modified pairwise ranking loss for the task. Experiments on MSVD and MSR-VTT datasets demonstrate that our method achieves significant performance gain compared to the state-of-the-art approaches.","PeriodicalId":224132,"journal":{"name":"Proceedings of the 2018 ACM on International Conference on Multimedia Retrieval","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"220","resultStr":"{\"title\":\"Learning Joint Embedding with Multimodal Cues for Cross-Modal Video-Text Retrieval\",\"authors\":\"Niluthpol Chowdhury Mithun, Juncheng Billy Li, Florian Metze, A. Roy-Chowdhury\",\"doi\":\"10.1145/3206025.3206064\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Constructing a joint representation invariant across different modalities (e.g., video, language) is of significant importance in many multimedia applications. While there are a number of recent successes in developing effective image-text retrieval methods by learning joint representations, the video-text retrieval task, however, has not been explored to its fullest extent. In this paper, we study how to effectively utilize available multimodal cues from videos for the cross-modal video-text retrieval task. Based on our analysis, we propose a novel framework that simultaneously utilizes multi-modal features (different visual characteristics, audio inputs, and text) by a fusion strategy for efficient retrieval. Furthermore, we explore several loss functions in training the embedding and propose a modified pairwise ranking loss for the task. Experiments on MSVD and MSR-VTT datasets demonstrate that our method achieves significant performance gain compared to the state-of-the-art approaches.\",\"PeriodicalId\":224132,\"journal\":{\"name\":\"Proceedings of the 2018 ACM on International Conference on Multimedia Retrieval\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"220\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2018 ACM on International Conference on Multimedia Retrieval\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3206025.3206064\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2018 ACM on International Conference on Multimedia Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3206025.3206064","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 220

摘要

在许多多媒体应用中,构建跨不同模态(如视频、语言)的联合表示不变量是非常重要的。虽然最近在通过学习联合表示开发有效的图像文本检索方法方面取得了一些成功,但是视频文本检索任务还没有被探索到最充分的程度。在本文中,我们研究了如何有效地利用来自视频的多模态线索进行跨模态视频文本检索任务。基于我们的分析,我们提出了一个新的框架,通过融合策略同时利用多模态特征(不同的视觉特征、音频输入和文本)进行高效检索。此外,我们探索了训练嵌入的几种损失函数,并提出了一种改进的成对排序损失。在MSVD和MSR-VTT数据集上的实验表明,与最先进的方法相比,我们的方法取得了显着的性能提升。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning Joint Embedding with Multimodal Cues for Cross-Modal Video-Text Retrieval
Constructing a joint representation invariant across different modalities (e.g., video, language) is of significant importance in many multimedia applications. While there are a number of recent successes in developing effective image-text retrieval methods by learning joint representations, the video-text retrieval task, however, has not been explored to its fullest extent. In this paper, we study how to effectively utilize available multimodal cues from videos for the cross-modal video-text retrieval task. Based on our analysis, we propose a novel framework that simultaneously utilizes multi-modal features (different visual characteristics, audio inputs, and text) by a fusion strategy for efficient retrieval. Furthermore, we explore several loss functions in training the embedding and propose a modified pairwise ranking loss for the task. Experiments on MSVD and MSR-VTT datasets demonstrate that our method achieves significant performance gain compared to the state-of-the-art approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信