{"title":"多面体、永久体和大因子图","authors":"P. Dagum, M. Luby, M. Mihail, U. Vazirani","doi":"10.1109/SFCS.1988.21957","DOIUrl":null,"url":null,"abstract":"Randomized algorithms for approximating the number of perfect matchings in a graph are considered. An algorithm that is a natural simplification of one suggested and analyzed previously is introduced and analyzed. One of the key ideas is to view the analysis from a geometric perspective: it is proved that for any graph G the k-slice of the well-known Edmonds matching polytope has magnification 1. For a bipartite graph G=(U, V, E), mod U mod = mod V mod =n, with d edge-disjoint perfect matchings, it is proved that the ratio of the number of almost perfect matchings to the number of perfect matchings is at most n/sup 3n/d/. For any constant alpha >0 this yields a a fully polynomial randomized algorithm for approximating the number of perfect matchings in bipartite graphs with d>or= alpha n. Moreover, for some constant c>0 it is the fastest known approximation algorithm for bipartite graphs with d>or= clog n.<<ETX>>","PeriodicalId":113255,"journal":{"name":"[Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1988-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"54","resultStr":"{\"title\":\"Polytopes, permanents and graphs with large factors\",\"authors\":\"P. Dagum, M. Luby, M. Mihail, U. Vazirani\",\"doi\":\"10.1109/SFCS.1988.21957\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Randomized algorithms for approximating the number of perfect matchings in a graph are considered. An algorithm that is a natural simplification of one suggested and analyzed previously is introduced and analyzed. One of the key ideas is to view the analysis from a geometric perspective: it is proved that for any graph G the k-slice of the well-known Edmonds matching polytope has magnification 1. For a bipartite graph G=(U, V, E), mod U mod = mod V mod =n, with d edge-disjoint perfect matchings, it is proved that the ratio of the number of almost perfect matchings to the number of perfect matchings is at most n/sup 3n/d/. For any constant alpha >0 this yields a a fully polynomial randomized algorithm for approximating the number of perfect matchings in bipartite graphs with d>or= alpha n. Moreover, for some constant c>0 it is the fastest known approximation algorithm for bipartite graphs with d>or= clog n.<<ETX>>\",\"PeriodicalId\":113255,\"journal\":{\"name\":\"[Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science\",\"volume\":\"54 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1988-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"54\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SFCS.1988.21957\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SFCS.1988.21957","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Polytopes, permanents and graphs with large factors
Randomized algorithms for approximating the number of perfect matchings in a graph are considered. An algorithm that is a natural simplification of one suggested and analyzed previously is introduced and analyzed. One of the key ideas is to view the analysis from a geometric perspective: it is proved that for any graph G the k-slice of the well-known Edmonds matching polytope has magnification 1. For a bipartite graph G=(U, V, E), mod U mod = mod V mod =n, with d edge-disjoint perfect matchings, it is proved that the ratio of the number of almost perfect matchings to the number of perfect matchings is at most n/sup 3n/d/. For any constant alpha >0 this yields a a fully polynomial randomized algorithm for approximating the number of perfect matchings in bipartite graphs with d>or= alpha n. Moreover, for some constant c>0 it is the fastest known approximation algorithm for bipartite graphs with d>or= clog n.<>