{"title":"液相共线纳秒双脉冲激光烧蚀制备胶体氧化铝纳米颗粒的实验研究","authors":"M. Mahdieh, B. Fattahi, M. Akbari Jafarabadi","doi":"10.1117/12.2257277","DOIUrl":null,"url":null,"abstract":"In this research, we investigated the effect of inter-pulse delay times on production of colloidal alumina nanoparticles by collinear double pulse laser ablation. In comparison to single pulse laser ablation, collinear double pulse laser ablation with inter-pulse delay times of 5, 10, 15 and 20 ns results in production of colloidal nanoparticles with smaller mean size and lower variance size distribution. In the case of 5 ns inter-pulse delay time, the highest concentration of nanoparticles was obtained due to more rapid cooling time of the plasma as a result of higher rate of nuclei generation than particle growth. The results also showed that the main pulse and the pre-pulse with 5 ns delay time have significant overlap and consequently such condition leads to maximum influence on the ablation.","PeriodicalId":293926,"journal":{"name":"International Symposium on High Power Laser Systems and Applications","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental investigation on colloidal alumina nanoparticles produced by collinear nanosecond double-pulse laser ablation in liquid\",\"authors\":\"M. Mahdieh, B. Fattahi, M. Akbari Jafarabadi\",\"doi\":\"10.1117/12.2257277\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this research, we investigated the effect of inter-pulse delay times on production of colloidal alumina nanoparticles by collinear double pulse laser ablation. In comparison to single pulse laser ablation, collinear double pulse laser ablation with inter-pulse delay times of 5, 10, 15 and 20 ns results in production of colloidal nanoparticles with smaller mean size and lower variance size distribution. In the case of 5 ns inter-pulse delay time, the highest concentration of nanoparticles was obtained due to more rapid cooling time of the plasma as a result of higher rate of nuclei generation than particle growth. The results also showed that the main pulse and the pre-pulse with 5 ns delay time have significant overlap and consequently such condition leads to maximum influence on the ablation.\",\"PeriodicalId\":293926,\"journal\":{\"name\":\"International Symposium on High Power Laser Systems and Applications\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-01-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Symposium on High Power Laser Systems and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2257277\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on High Power Laser Systems and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2257277","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Experimental investigation on colloidal alumina nanoparticles produced by collinear nanosecond double-pulse laser ablation in liquid
In this research, we investigated the effect of inter-pulse delay times on production of colloidal alumina nanoparticles by collinear double pulse laser ablation. In comparison to single pulse laser ablation, collinear double pulse laser ablation with inter-pulse delay times of 5, 10, 15 and 20 ns results in production of colloidal nanoparticles with smaller mean size and lower variance size distribution. In the case of 5 ns inter-pulse delay time, the highest concentration of nanoparticles was obtained due to more rapid cooling time of the plasma as a result of higher rate of nuclei generation than particle growth. The results also showed that the main pulse and the pre-pulse with 5 ns delay time have significant overlap and consequently such condition leads to maximum influence on the ablation.