学生的表现如何?虚拟学习环境中学生表现分类的机器学习方法

Fatema M. Alnassar, T. Blackwell, E. Homayounvala, M. Yee-King
{"title":"学生的表现如何?虚拟学习环境中学生表现分类的机器学习方法","authors":"Fatema M. Alnassar, T. Blackwell, E. Homayounvala, M. Yee-King","doi":"10.1109/ICIEM51511.2021.9445286","DOIUrl":null,"url":null,"abstract":"Prediction of student’s performance using different relevant information has emerged as an efficient tool in educational institutes towards improving the curriculum and teaching methodologies. Automated analysis of educational data using state of the art Machine Learning (ML) and Artificial Intelligence (AI) algorithms is an active area of research. The research addresses the problem of student performance prediction by using three ML algorithms (i.e., Support Vector Classifier (SVC), k-Nearest Neighbour (k-NN), Artificial Neural Network (ANN)) on Open University (OU) dataset. Educational data is analyzed for three main indicators including demographic, engagement and performance. From the experimental analysis, the k-NN approach emerged as best for OU experiments when compared among applied and with existing literature. Improvement of results is attributed to change in dealing with missing values and data standardization approaches.","PeriodicalId":264094,"journal":{"name":"2021 2nd International Conference on Intelligent Engineering and Management (ICIEM)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"How Well a Student Performed? A Machine Learning Approach to Classify Students’ Performance on Virtual Learning Environment\",\"authors\":\"Fatema M. Alnassar, T. Blackwell, E. Homayounvala, M. Yee-King\",\"doi\":\"10.1109/ICIEM51511.2021.9445286\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Prediction of student’s performance using different relevant information has emerged as an efficient tool in educational institutes towards improving the curriculum and teaching methodologies. Automated analysis of educational data using state of the art Machine Learning (ML) and Artificial Intelligence (AI) algorithms is an active area of research. The research addresses the problem of student performance prediction by using three ML algorithms (i.e., Support Vector Classifier (SVC), k-Nearest Neighbour (k-NN), Artificial Neural Network (ANN)) on Open University (OU) dataset. Educational data is analyzed for three main indicators including demographic, engagement and performance. From the experimental analysis, the k-NN approach emerged as best for OU experiments when compared among applied and with existing literature. Improvement of results is attributed to change in dealing with missing values and data standardization approaches.\",\"PeriodicalId\":264094,\"journal\":{\"name\":\"2021 2nd International Conference on Intelligent Engineering and Management (ICIEM)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 2nd International Conference on Intelligent Engineering and Management (ICIEM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIEM51511.2021.9445286\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 2nd International Conference on Intelligent Engineering and Management (ICIEM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIEM51511.2021.9445286","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

利用不同的相关信息预测学生的表现已经成为教育机构改进课程和教学方法的有效工具。使用最先进的机器学习(ML)和人工智能(AI)算法对教育数据进行自动分析是一个活跃的研究领域。该研究通过在开放大学(OU)数据集上使用三种ML算法(即支持向量分类器(SVC), k-近邻(k-NN),人工神经网络(ANN))来解决学生成绩预测问题。教育数据分析了三个主要指标,包括人口统计、参与度和表现。从实验分析来看,当与应用文献和现有文献进行比较时,k-NN方法最适合OU实验。结果的改善归功于处理缺失值和数据标准化方法的变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
How Well a Student Performed? A Machine Learning Approach to Classify Students’ Performance on Virtual Learning Environment
Prediction of student’s performance using different relevant information has emerged as an efficient tool in educational institutes towards improving the curriculum and teaching methodologies. Automated analysis of educational data using state of the art Machine Learning (ML) and Artificial Intelligence (AI) algorithms is an active area of research. The research addresses the problem of student performance prediction by using three ML algorithms (i.e., Support Vector Classifier (SVC), k-Nearest Neighbour (k-NN), Artificial Neural Network (ANN)) on Open University (OU) dataset. Educational data is analyzed for three main indicators including demographic, engagement and performance. From the experimental analysis, the k-NN approach emerged as best for OU experiments when compared among applied and with existing literature. Improvement of results is attributed to change in dealing with missing values and data standardization approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信