具有空间率失真控制的神经视频编解码器

Noor Fathima Ghouse, Jens Petersen, Guillaume Sautière, A. Wiggers, R. Pourreza
{"title":"具有空间率失真控制的神经视频编解码器","authors":"Noor Fathima Ghouse, Jens Petersen, Guillaume Sautière, A. Wiggers, R. Pourreza","doi":"10.1109/WACV56688.2023.00533","DOIUrl":null,"url":null,"abstract":"Neural video compression algorithms are nearly competitive with hand-crafted codecs in terms of rate-distortion performance and subjective quality. However, many neural codecs are inflexible black boxes, and give users little to no control over the reconstruction quality and bitrate. In this work, we present a flexible neural video codec that combines ideas from variable-bitrate codecs and region-of-interest-based coding. By conditioning our model on a global rate-distortion tradeoff parameter and a region-of-interest (ROI) mask, we obtain dynamic control over the per-frame bitrate and the reconstruction quality in the ROI at test time. The resulting codec enables practical use cases such as coding under bitrate constraints with fixed ROI quality, while taking a negligible hit in performance compared to a fixed-rate model. We find that our codec performs best on sequences with complex motion, where we substantially outperform non-ROI codecs in the region of interest with Bjøntegaard-Delta rate savings exceeding 60%.","PeriodicalId":270631,"journal":{"name":"2023 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)","volume":"312-315 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A neural video codec with spatial rate-distortion control\",\"authors\":\"Noor Fathima Ghouse, Jens Petersen, Guillaume Sautière, A. Wiggers, R. Pourreza\",\"doi\":\"10.1109/WACV56688.2023.00533\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Neural video compression algorithms are nearly competitive with hand-crafted codecs in terms of rate-distortion performance and subjective quality. However, many neural codecs are inflexible black boxes, and give users little to no control over the reconstruction quality and bitrate. In this work, we present a flexible neural video codec that combines ideas from variable-bitrate codecs and region-of-interest-based coding. By conditioning our model on a global rate-distortion tradeoff parameter and a region-of-interest (ROI) mask, we obtain dynamic control over the per-frame bitrate and the reconstruction quality in the ROI at test time. The resulting codec enables practical use cases such as coding under bitrate constraints with fixed ROI quality, while taking a negligible hit in performance compared to a fixed-rate model. We find that our codec performs best on sequences with complex motion, where we substantially outperform non-ROI codecs in the region of interest with Bjøntegaard-Delta rate savings exceeding 60%.\",\"PeriodicalId\":270631,\"journal\":{\"name\":\"2023 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)\",\"volume\":\"312-315 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WACV56688.2023.00533\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WACV56688.2023.00533","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

神经视频压缩算法在率失真性能和主观质量方面几乎与手工编解码器竞争。然而,许多神经编解码器都是不灵活的黑盒,用户几乎无法控制重建质量和比特率。在这项工作中,我们提出了一种灵活的神经视频编解码器,它结合了可变比特率编解码器和基于兴趣区域的编码的思想。通过在全局率失真权衡参数和感兴趣区域(ROI)掩码上调节我们的模型,我们在测试时获得了对每帧比特率和感兴趣区域重建质量的动态控制。由此产生的编解码器支持实际用例,例如在具有固定ROI质量的比特率约束下进行编码,同时与固定速率模型相比,在性能上的影响可以忽略不计。我们发现我们的编解码器在具有复杂运动的序列上表现最好,在感兴趣的区域内,我们的编解码器的性能大大优于非roi编解码器,Bjøntegaard-Delta速率节省超过60%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A neural video codec with spatial rate-distortion control
Neural video compression algorithms are nearly competitive with hand-crafted codecs in terms of rate-distortion performance and subjective quality. However, many neural codecs are inflexible black boxes, and give users little to no control over the reconstruction quality and bitrate. In this work, we present a flexible neural video codec that combines ideas from variable-bitrate codecs and region-of-interest-based coding. By conditioning our model on a global rate-distortion tradeoff parameter and a region-of-interest (ROI) mask, we obtain dynamic control over the per-frame bitrate and the reconstruction quality in the ROI at test time. The resulting codec enables practical use cases such as coding under bitrate constraints with fixed ROI quality, while taking a negligible hit in performance compared to a fixed-rate model. We find that our codec performs best on sequences with complex motion, where we substantially outperform non-ROI codecs in the region of interest with Bjøntegaard-Delta rate savings exceeding 60%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信