使用文本分类进行餐馆检查的预测分析

Zhu Wang, B. Balasubramani, I. Cruz
{"title":"使用文本分类进行餐馆检查的预测分析","authors":"Zhu Wang, B. Balasubramani, I. Cruz","doi":"10.1145/3152178.3152192","DOIUrl":null,"url":null,"abstract":"According to the Center for Disease Control (CDC), there are almost 48 million people affected by foodborne diseases in the U.S. every year, including 3,000 deaths. The most effective way of avoiding food poisoning would be its prevention. However, complete prevention is not possible, therefore Public Health departments perform routine restaurant inspections, combined with the practice of inspecting specific restaurants once a disease outbreak is identified. Following other health applications (e.g., prediction of a flu outbreak using Twitter), we use social media and a predictive analytics approach to identify the need for targeted visits by city inspectors.","PeriodicalId":378940,"journal":{"name":"Proceedings of the 3rd ACM SIGSPATIAL Workshop on Smart Cities and Urban Analytics","volume":"124 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Predictive Analytics Using Text Classification for Restaurant Inspections\",\"authors\":\"Zhu Wang, B. Balasubramani, I. Cruz\",\"doi\":\"10.1145/3152178.3152192\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"According to the Center for Disease Control (CDC), there are almost 48 million people affected by foodborne diseases in the U.S. every year, including 3,000 deaths. The most effective way of avoiding food poisoning would be its prevention. However, complete prevention is not possible, therefore Public Health departments perform routine restaurant inspections, combined with the practice of inspecting specific restaurants once a disease outbreak is identified. Following other health applications (e.g., prediction of a flu outbreak using Twitter), we use social media and a predictive analytics approach to identify the need for targeted visits by city inspectors.\",\"PeriodicalId\":378940,\"journal\":{\"name\":\"Proceedings of the 3rd ACM SIGSPATIAL Workshop on Smart Cities and Urban Analytics\",\"volume\":\"124 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 3rd ACM SIGSPATIAL Workshop on Smart Cities and Urban Analytics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3152178.3152192\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 3rd ACM SIGSPATIAL Workshop on Smart Cities and Urban Analytics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3152178.3152192","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

根据美国疾病控制中心(CDC)的数据,美国每年有近4800万人受到食源性疾病的影响,其中3000人死亡。避免食物中毒最有效的方法是预防。然而,完全预防是不可能的,因此公共卫生部门进行常规餐馆检查,并结合一旦确定疾病爆发对特定餐馆进行检查的做法。继其他健康应用程序(例如,使用Twitter预测流感爆发)之后,我们使用社交媒体和预测分析方法来确定城市检查员是否需要进行有针对性的访问。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predictive Analytics Using Text Classification for Restaurant Inspections
According to the Center for Disease Control (CDC), there are almost 48 million people affected by foodborne diseases in the U.S. every year, including 3,000 deaths. The most effective way of avoiding food poisoning would be its prevention. However, complete prevention is not possible, therefore Public Health departments perform routine restaurant inspections, combined with the practice of inspecting specific restaurants once a disease outbreak is identified. Following other health applications (e.g., prediction of a flu outbreak using Twitter), we use social media and a predictive analytics approach to identify the need for targeted visits by city inspectors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信