用于自动驾驶的深度卷积红绿灯识别

Martin Bach, Daniel Stumper, K. Dietmayer
{"title":"用于自动驾驶的深度卷积红绿灯识别","authors":"Martin Bach, Daniel Stumper, K. Dietmayer","doi":"10.1109/ITSC.2018.8569522","DOIUrl":null,"url":null,"abstract":"Robust traffic light detection and state recognition is of crucial importance on the path to automated vehicles. However, the mere classification of the signaled states does not suffice at complex multi-lane intersections. Rather, a complete understanding of the intersection, but at least the recognition of additional information (like arrows displayed on the traffic lights) is necessary. In this work, we developed a unified deep convolutional traffic light recognition system on the basis of the Faster R-CNN architecture, which is able to not only detect traffic lights and classify their state, but also distinguish their type (circle, straight, left, and right). An in-depth analysis of its performance on the large and diverse DriveU Traffic Light Dataset shows an overall detection performance of 0.92 Average Precision for traffic lights of width greater than 8 px. Additionally, other kinds of traffic lights, e.g. pedestrian lights, have been identified as main cause of false positives. Moreover, we evaluated the usefulness of the developed system to assess the traffic light states for all present driving directions revealing inconsistencies among multiple detections in single images.","PeriodicalId":395239,"journal":{"name":"2018 21st International Conference on Intelligent Transportation Systems (ITSC)","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":"{\"title\":\"Deep Convolutional Traffic Light Recognition for Automated Driving\",\"authors\":\"Martin Bach, Daniel Stumper, K. Dietmayer\",\"doi\":\"10.1109/ITSC.2018.8569522\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Robust traffic light detection and state recognition is of crucial importance on the path to automated vehicles. However, the mere classification of the signaled states does not suffice at complex multi-lane intersections. Rather, a complete understanding of the intersection, but at least the recognition of additional information (like arrows displayed on the traffic lights) is necessary. In this work, we developed a unified deep convolutional traffic light recognition system on the basis of the Faster R-CNN architecture, which is able to not only detect traffic lights and classify their state, but also distinguish their type (circle, straight, left, and right). An in-depth analysis of its performance on the large and diverse DriveU Traffic Light Dataset shows an overall detection performance of 0.92 Average Precision for traffic lights of width greater than 8 px. Additionally, other kinds of traffic lights, e.g. pedestrian lights, have been identified as main cause of false positives. Moreover, we evaluated the usefulness of the developed system to assess the traffic light states for all present driving directions revealing inconsistencies among multiple detections in single images.\",\"PeriodicalId\":395239,\"journal\":{\"name\":\"2018 21st International Conference on Intelligent Transportation Systems (ITSC)\",\"volume\":\"59 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"33\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 21st International Conference on Intelligent Transportation Systems (ITSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITSC.2018.8569522\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 21st International Conference on Intelligent Transportation Systems (ITSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITSC.2018.8569522","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 33

摘要

鲁棒的交通灯检测和状态识别在自动驾驶道路上至关重要。然而,对于复杂的多车道交叉口,仅仅对信号状态进行分类是不够的。相反,完全了解十字路口,但至少识别额外的信息(如交通灯上显示的箭头)是必要的。在这项工作中,我们基于Faster R-CNN架构开发了一个统一的深度卷积交通灯识别系统,该系统不仅能够检测交通灯并对其状态进行分类,而且能够区分交通灯的类型(圆、直、左、右)。深入分析其在大型和多样化的DriveU交通灯数据集上的性能显示,对于宽度大于8像素的交通灯,其整体检测性能为0.92 Average Precision。此外,其他类型的交通信号灯,如行人信号灯,已被确定为误报的主要原因。此外,我们评估了开发的系统在评估所有当前驾驶方向的交通灯状态时的实用性,揭示了单个图像中多个检测之间的不一致性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep Convolutional Traffic Light Recognition for Automated Driving
Robust traffic light detection and state recognition is of crucial importance on the path to automated vehicles. However, the mere classification of the signaled states does not suffice at complex multi-lane intersections. Rather, a complete understanding of the intersection, but at least the recognition of additional information (like arrows displayed on the traffic lights) is necessary. In this work, we developed a unified deep convolutional traffic light recognition system on the basis of the Faster R-CNN architecture, which is able to not only detect traffic lights and classify their state, but also distinguish their type (circle, straight, left, and right). An in-depth analysis of its performance on the large and diverse DriveU Traffic Light Dataset shows an overall detection performance of 0.92 Average Precision for traffic lights of width greater than 8 px. Additionally, other kinds of traffic lights, e.g. pedestrian lights, have been identified as main cause of false positives. Moreover, we evaluated the usefulness of the developed system to assess the traffic light states for all present driving directions revealing inconsistencies among multiple detections in single images.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信