基于张量分解的高光谱图像空间光谱压缩与分析

R. Renu, V. Sowmya, K. Soman
{"title":"基于张量分解的高光谱图像空间光谱压缩与分析","authors":"R. Renu, V. Sowmya, K. Soman","doi":"10.1109/NCC.2018.8600185","DOIUrl":null,"url":null,"abstract":"Hyperspectral images are large cubes of data which are commonly processed band-wise as two-dimensional image patches. This 2D processing might lead to loose the spectral efficiency contained in the image. Introducing Hyperspectral image as third-order tensors helps to preserve the spectral and spatial efficiency of the image. Multilinear Singular Value Decomposition (MLSVD) is an extension of Singular Value Decomposition (SVD) to 3D which can be used for compressing the image spatially and spectrally. The efficiency of compression is verified by reconstructing the image using Low Multilinear Rank Approximation (LMLRA). The proposed method has been validated with Signal to Noise Ratio (SNR), pixel reflectance spectrum and pixel-wise classification of the reconstructed image.","PeriodicalId":121544,"journal":{"name":"2018 Twenty Fourth National Conference on Communications (NCC)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Spatio-Spectral Compression and Analysis of Hyperspectral Images using Tensor Decomposition\",\"authors\":\"R. Renu, V. Sowmya, K. Soman\",\"doi\":\"10.1109/NCC.2018.8600185\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hyperspectral images are large cubes of data which are commonly processed band-wise as two-dimensional image patches. This 2D processing might lead to loose the spectral efficiency contained in the image. Introducing Hyperspectral image as third-order tensors helps to preserve the spectral and spatial efficiency of the image. Multilinear Singular Value Decomposition (MLSVD) is an extension of Singular Value Decomposition (SVD) to 3D which can be used for compressing the image spatially and spectrally. The efficiency of compression is verified by reconstructing the image using Low Multilinear Rank Approximation (LMLRA). The proposed method has been validated with Signal to Noise Ratio (SNR), pixel reflectance spectrum and pixel-wise classification of the reconstructed image.\",\"PeriodicalId\":121544,\"journal\":{\"name\":\"2018 Twenty Fourth National Conference on Communications (NCC)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 Twenty Fourth National Conference on Communications (NCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NCC.2018.8600185\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Twenty Fourth National Conference on Communications (NCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NCC.2018.8600185","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

高光谱图像是数据的大立方体,通常以二维图像块的方式进行波段处理。这种二维处理可能会导致图像中包含的光谱效率降低。将高光谱图像引入三阶张量有助于保持图像的光谱效率和空间效率。多线性奇异值分解(MLSVD)是奇异值分解(SVD)在三维图像中的扩展,可用于图像的空间和频谱压缩。利用低多元线性秩近似(LMLRA)重构图像,验证了压缩的有效性。用信噪比、像元反射光谱和重构图像的逐像元分类对该方法进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spatio-Spectral Compression and Analysis of Hyperspectral Images using Tensor Decomposition
Hyperspectral images are large cubes of data which are commonly processed band-wise as two-dimensional image patches. This 2D processing might lead to loose the spectral efficiency contained in the image. Introducing Hyperspectral image as third-order tensors helps to preserve the spectral and spatial efficiency of the image. Multilinear Singular Value Decomposition (MLSVD) is an extension of Singular Value Decomposition (SVD) to 3D which can be used for compressing the image spatially and spectrally. The efficiency of compression is verified by reconstructing the image using Low Multilinear Rank Approximation (LMLRA). The proposed method has been validated with Signal to Noise Ratio (SNR), pixel reflectance spectrum and pixel-wise classification of the reconstructed image.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信