粘土中隔水管复合桩竖向承载力研究

Liang Chao, L. Run, Wan Jun, Gu Pei, Li Xiangyun
{"title":"粘土中隔水管复合桩竖向承载力研究","authors":"Liang Chao, L. Run, Wan Jun, Gu Pei, Li Xiangyun","doi":"10.1115/OMAE2018-78492","DOIUrl":null,"url":null,"abstract":"In order to meet the development need of small-scale marginal oilfield, it is proposed to use the riser and surface casing to bear the loads replacing or partially replacing the steel pipe pile foundation. In this paper, the vertical bearing behavior of variable cross-section composite pile with the diameter of upper part larger than that of lower part (composed of riser and surface casing) is analyzed by finite element method. Then, the influences of different length combinations and diameter combinations of the composite pile on vertical bearing mechanism are studied, and the characteristics of stress concentration at the variable cross-section are revealed. The calculation results show that the increase in pile diameter, pile length and diameter ratio can effectively improve the bearing capacity of riser composite piles. The vertical ultimate bearing capacity of riser composite piles is greatly affected by upper part and less affected by lower part. The bearing capacity of lower part is gradually exerted, as the plastic zone appears at the end of the upper part, meanwhile, the Q-s curve shows as a broken line, which means that a larger pile top settlement is needed in order to effectively activate the bearing capacity of lower part.","PeriodicalId":106551,"journal":{"name":"Volume 9: Offshore Geotechnics; Honoring Symposium for Professor Bernard Molin on Marine and Offshore Hydrodynamics","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Study on Vertical Bearing Capacity of the Riser Composite Pile in Clay\",\"authors\":\"Liang Chao, L. Run, Wan Jun, Gu Pei, Li Xiangyun\",\"doi\":\"10.1115/OMAE2018-78492\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to meet the development need of small-scale marginal oilfield, it is proposed to use the riser and surface casing to bear the loads replacing or partially replacing the steel pipe pile foundation. In this paper, the vertical bearing behavior of variable cross-section composite pile with the diameter of upper part larger than that of lower part (composed of riser and surface casing) is analyzed by finite element method. Then, the influences of different length combinations and diameter combinations of the composite pile on vertical bearing mechanism are studied, and the characteristics of stress concentration at the variable cross-section are revealed. The calculation results show that the increase in pile diameter, pile length and diameter ratio can effectively improve the bearing capacity of riser composite piles. The vertical ultimate bearing capacity of riser composite piles is greatly affected by upper part and less affected by lower part. The bearing capacity of lower part is gradually exerted, as the plastic zone appears at the end of the upper part, meanwhile, the Q-s curve shows as a broken line, which means that a larger pile top settlement is needed in order to effectively activate the bearing capacity of lower part.\",\"PeriodicalId\":106551,\"journal\":{\"name\":\"Volume 9: Offshore Geotechnics; Honoring Symposium for Professor Bernard Molin on Marine and Offshore Hydrodynamics\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 9: Offshore Geotechnics; Honoring Symposium for Professor Bernard Molin on Marine and Offshore Hydrodynamics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/OMAE2018-78492\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 9: Offshore Geotechnics; Honoring Symposium for Professor Bernard Molin on Marine and Offshore Hydrodynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/OMAE2018-78492","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

为了满足小型边缘油田的开发需要,提出用隔水管和地面套管代替或部分代替钢管桩基础承担荷载。本文采用有限元法分析了上部直径大于下部直径(由隔水管和表面套管组成)的变截面复合桩的竖向承载性能。然后,研究了不同长度组合和直径组合对复合桩竖向承载机理的影响,揭示了变截面处的应力集中特征。计算结果表明,增加桩径、桩长和径比可以有效提高隔水管复合桩的承载力。立管复合桩竖向极限承载力受上部影响较大,受下部影响较小。下部承载力逐渐发挥,上部末端出现塑性区,同时Q-s曲线呈折线状,说明需要较大的桩顶沉降才能有效激活下部承载力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Study on Vertical Bearing Capacity of the Riser Composite Pile in Clay
In order to meet the development need of small-scale marginal oilfield, it is proposed to use the riser and surface casing to bear the loads replacing or partially replacing the steel pipe pile foundation. In this paper, the vertical bearing behavior of variable cross-section composite pile with the diameter of upper part larger than that of lower part (composed of riser and surface casing) is analyzed by finite element method. Then, the influences of different length combinations and diameter combinations of the composite pile on vertical bearing mechanism are studied, and the characteristics of stress concentration at the variable cross-section are revealed. The calculation results show that the increase in pile diameter, pile length and diameter ratio can effectively improve the bearing capacity of riser composite piles. The vertical ultimate bearing capacity of riser composite piles is greatly affected by upper part and less affected by lower part. The bearing capacity of lower part is gradually exerted, as the plastic zone appears at the end of the upper part, meanwhile, the Q-s curve shows as a broken line, which means that a larger pile top settlement is needed in order to effectively activate the bearing capacity of lower part.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信