在0.8 ga0.2 as复合通道hemt中,Lg = 19 nm, fT = 738 GHz, fmax = 492 GHz

Hyeon-Bhin Jo, Seung-Won Yun, Jun-Gyu Kim, D. Yun, I. Lee, Daehyun Kim, Tae-Woo Kim, Sang-Kuk Kim, J. Yun, T.E. Kim, T. Tsutsumi, H. Sugiyama, H. Matsuzaki
{"title":"在0.8 ga0.2 as复合通道hemt中,Lg = 19 nm, fT = 738 GHz, fmax = 492 GHz","authors":"Hyeon-Bhin Jo, Seung-Won Yun, Jun-Gyu Kim, D. Yun, I. Lee, Daehyun Kim, Tae-Woo Kim, Sang-Kuk Kim, J. Yun, T.E. Kim, T. Tsutsumi, H. Sugiyama, H. Matsuzaki","doi":"10.1109/IEDM13553.2020.9372070","DOIUrl":null,"url":null,"abstract":"We present L<inf>g</inf> = 19 nm In<inf>0.8</inf>Ga<inf>0.2</inf>As composite-channel high-electron mobility transistors (HEMTs) with outstanding DC and high-frequency characteristics. We adopted a composite-channel design with an In<inf>0.8</inf>Ga<inf>0.2</inf>As core layer that led to superior carrier transport properties. The device with L<inf>g</inf> = 19 nm displayed an excellent combination of R<inf>ON</inf> = 271 Ω-μm, g<inf>m_max</inf> = 2.5 mS/μm and f<inf>T</inf>/f<inf>max</inf> = 738/492 GHz. To understand the physical origin of such an excellent combination of DC and RF responses, we analyzed the effective mobility (μ<inf>n_eff</inf>) and delay time for both long- and short-L<inf>g</inf> devices, revealing a very high μ<inf>n_eff</inf> value of 13,200 cm<sup>2</sup>/V•s and an average velocity under the gate (v<inf>avg</inf>) of 6.2 × 10<sup>7</sup> cm/s. We also studied the impact of the gate-to-source spacing (L<inf>GS</inf>) and the electrostatic integrity of the device, finding that a reduction of L<inf>GS</inf> less than 0.6 μm was of little use in improving g<inf>m_max</inf> and f<inf>T</inf>. Additionally, the intrinsic output conductance (g<inf>o_int</inf>) had an important impact on f<inf>T</inf> in short-L<inf>g</inf> HEMTs.","PeriodicalId":415186,"journal":{"name":"2020 IEEE International Electron Devices Meeting (IEDM)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Lg = 19 nm In0.8Ga0.2As composite-channel HEMTs with fT = 738 GHz and fmax = 492 GHz\",\"authors\":\"Hyeon-Bhin Jo, Seung-Won Yun, Jun-Gyu Kim, D. Yun, I. Lee, Daehyun Kim, Tae-Woo Kim, Sang-Kuk Kim, J. Yun, T.E. Kim, T. Tsutsumi, H. Sugiyama, H. Matsuzaki\",\"doi\":\"10.1109/IEDM13553.2020.9372070\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present L<inf>g</inf> = 19 nm In<inf>0.8</inf>Ga<inf>0.2</inf>As composite-channel high-electron mobility transistors (HEMTs) with outstanding DC and high-frequency characteristics. We adopted a composite-channel design with an In<inf>0.8</inf>Ga<inf>0.2</inf>As core layer that led to superior carrier transport properties. The device with L<inf>g</inf> = 19 nm displayed an excellent combination of R<inf>ON</inf> = 271 Ω-μm, g<inf>m_max</inf> = 2.5 mS/μm and f<inf>T</inf>/f<inf>max</inf> = 738/492 GHz. To understand the physical origin of such an excellent combination of DC and RF responses, we analyzed the effective mobility (μ<inf>n_eff</inf>) and delay time for both long- and short-L<inf>g</inf> devices, revealing a very high μ<inf>n_eff</inf> value of 13,200 cm<sup>2</sup>/V•s and an average velocity under the gate (v<inf>avg</inf>) of 6.2 × 10<sup>7</sup> cm/s. We also studied the impact of the gate-to-source spacing (L<inf>GS</inf>) and the electrostatic integrity of the device, finding that a reduction of L<inf>GS</inf> less than 0.6 μm was of little use in improving g<inf>m_max</inf> and f<inf>T</inf>. Additionally, the intrinsic output conductance (g<inf>o_int</inf>) had an important impact on f<inf>T</inf> in short-L<inf>g</inf> HEMTs.\",\"PeriodicalId\":415186,\"journal\":{\"name\":\"2020 IEEE International Electron Devices Meeting (IEDM)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Electron Devices Meeting (IEDM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IEDM13553.2020.9372070\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Electron Devices Meeting (IEDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEDM13553.2020.9372070","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

我们提出了Lg = 19 nm的In0.8Ga0.2As复合通道高电子迁移率晶体管(hemt),具有出色的直流和高频特性。我们采用了In0.8Ga0.2As核心层的复合通道设计,从而获得了优越的载流子传输性能。Lg = 19 nm的器件表现出RON = 271 Ω-μm、gm_max = 2.5 mS/μm和fT/fmax = 738/492 GHz的优异组合。为了了解这种优异的直流和射频响应组合的物理根源,我们分析了长lg和短lg器件的有效迁移率(μn_eff)和延迟时间,发现μn_eff值非常高,为13,200 cm2/V•s,栅极下的平均速度(vavg)为6.2 × 107 cm/s。我们还研究了栅极源间距(LGS)和器件的静电完整性的影响,发现LGS减小小于0.6 μm对提高gm_max和fT的作用不大。此外,短lg hemt的固有输出电导(go_int)对fT有重要影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lg = 19 nm In0.8Ga0.2As composite-channel HEMTs with fT = 738 GHz and fmax = 492 GHz
We present Lg = 19 nm In0.8Ga0.2As composite-channel high-electron mobility transistors (HEMTs) with outstanding DC and high-frequency characteristics. We adopted a composite-channel design with an In0.8Ga0.2As core layer that led to superior carrier transport properties. The device with Lg = 19 nm displayed an excellent combination of RON = 271 Ω-μm, gm_max = 2.5 mS/μm and fT/fmax = 738/492 GHz. To understand the physical origin of such an excellent combination of DC and RF responses, we analyzed the effective mobility (μn_eff) and delay time for both long- and short-Lg devices, revealing a very high μn_eff value of 13,200 cm2/V•s and an average velocity under the gate (vavg) of 6.2 × 107 cm/s. We also studied the impact of the gate-to-source spacing (LGS) and the electrostatic integrity of the device, finding that a reduction of LGS less than 0.6 μm was of little use in improving gm_max and fT. Additionally, the intrinsic output conductance (go_int) had an important impact on fT in short-Lg HEMTs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信