将STATCOM纳入牛顿潮流的简单方法及最优潮流算法

M. Lawal
{"title":"将STATCOM纳入牛顿潮流的简单方法及最优潮流算法","authors":"M. Lawal","doi":"10.18196/jet.v7i1.17957","DOIUrl":null,"url":null,"abstract":"Incorporating STATCOM into existing power flow (PF) or optimal power flow (OPF) algorithm usually requires the development of complex program codes to represent associated derivatives introduced by STATCOM power flow models. This procedure is time consuming as it may require various corrections of errors before having a suitable program that effectively solves the problem. To avoid this stress, an efficient way of incorporating STATCOM’s power flow models into an existing Newton-based PF and OPF algorithm is presented in this paper. These models introduce the magnitude and angle of the STATCOM’s source converter’s voltage as a state variable into the PF and OPF problem formulations. This work simply treats the STATCOM as a PV-bus with zero real power in existing PF and OPF algorithms. The proposed procedures were applied to a 5-bus test system and the results obtained were validated with similar works available in open literature. After a satisfactory performance, it was further applied to the 30-bus and 57-bus IEEE test systems. The results obtained show the effectiveness of the proposed procedures in voltage profile improvement. For example, the PF results show that the voltage magnitudes of the two buses with STATCOM in the 30-bus system were improved from 0.9881 pu and 0.9702 pu to 1.027 pu and 1.041 pu, respectively. Also, the OPF results show that the voltage magnitudes of the three buses with STATCOM in the 57-bus system were improved from 1.063 pu, 0.90 pu and 0.9683 pu to 1.039 pu, 0.9796 pu and 1.0144 pu, respectively.","PeriodicalId":402105,"journal":{"name":"Journal of Electrical Technology UMY","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Simple Approach to Incorporating STATCOM into a Newton-Based Power Flow and Optimal Power Flow Algorithms\",\"authors\":\"M. Lawal\",\"doi\":\"10.18196/jet.v7i1.17957\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Incorporating STATCOM into existing power flow (PF) or optimal power flow (OPF) algorithm usually requires the development of complex program codes to represent associated derivatives introduced by STATCOM power flow models. This procedure is time consuming as it may require various corrections of errors before having a suitable program that effectively solves the problem. To avoid this stress, an efficient way of incorporating STATCOM’s power flow models into an existing Newton-based PF and OPF algorithm is presented in this paper. These models introduce the magnitude and angle of the STATCOM’s source converter’s voltage as a state variable into the PF and OPF problem formulations. This work simply treats the STATCOM as a PV-bus with zero real power in existing PF and OPF algorithms. The proposed procedures were applied to a 5-bus test system and the results obtained were validated with similar works available in open literature. After a satisfactory performance, it was further applied to the 30-bus and 57-bus IEEE test systems. The results obtained show the effectiveness of the proposed procedures in voltage profile improvement. For example, the PF results show that the voltage magnitudes of the two buses with STATCOM in the 30-bus system were improved from 0.9881 pu and 0.9702 pu to 1.027 pu and 1.041 pu, respectively. Also, the OPF results show that the voltage magnitudes of the three buses with STATCOM in the 57-bus system were improved from 1.063 pu, 0.90 pu and 0.9683 pu to 1.039 pu, 0.9796 pu and 1.0144 pu, respectively.\",\"PeriodicalId\":402105,\"journal\":{\"name\":\"Journal of Electrical Technology UMY\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Electrical Technology UMY\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18196/jet.v7i1.17957\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electrical Technology UMY","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18196/jet.v7i1.17957","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

将STATCOM纳入现有的潮流(PF)或最优潮流(OPF)算法通常需要开发复杂的程序代码来表示STATCOM潮流模型引入的相关导数。这个过程是耗时的,因为在有一个合适的程序有效地解决问题之前,它可能需要各种错误的纠正。为了避免这种压力,本文提出了一种将STATCOM的潮流模型整合到现有的基于牛顿的PF和OPF算法中的有效方法。这些模型将STATCOM源变换器电压的幅度和角度作为状态变量引入到PF和OPF问题公式中。这项工作简单地将STATCOM作为现有PF和OPF算法中实际功率为零的pv总线。所提出的程序应用于一个5总线测试系统,所获得的结果与公开文献中的类似作品进行了验证。在取得满意的性能后,进一步将其应用于30总线和57总线的IEEE测试系统中。结果表明,所提方法在改善电压分布方面是有效的。例如,PF结果表明,在30总线系统中,具有STATCOM的两总线的电压值分别从0.9881和0.9702 pu提高到1.027和1.041 pu。另外,OPF结果表明,在57总线系统中,采用STATCOM的3个母线的电压值分别从1.063、0.90和0.9683 pu提高到1.039、0.9796和1.0144 pu。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Simple Approach to Incorporating STATCOM into a Newton-Based Power Flow and Optimal Power Flow Algorithms
Incorporating STATCOM into existing power flow (PF) or optimal power flow (OPF) algorithm usually requires the development of complex program codes to represent associated derivatives introduced by STATCOM power flow models. This procedure is time consuming as it may require various corrections of errors before having a suitable program that effectively solves the problem. To avoid this stress, an efficient way of incorporating STATCOM’s power flow models into an existing Newton-based PF and OPF algorithm is presented in this paper. These models introduce the magnitude and angle of the STATCOM’s source converter’s voltage as a state variable into the PF and OPF problem formulations. This work simply treats the STATCOM as a PV-bus with zero real power in existing PF and OPF algorithms. The proposed procedures were applied to a 5-bus test system and the results obtained were validated with similar works available in open literature. After a satisfactory performance, it was further applied to the 30-bus and 57-bus IEEE test systems. The results obtained show the effectiveness of the proposed procedures in voltage profile improvement. For example, the PF results show that the voltage magnitudes of the two buses with STATCOM in the 30-bus system were improved from 0.9881 pu and 0.9702 pu to 1.027 pu and 1.041 pu, respectively. Also, the OPF results show that the voltage magnitudes of the three buses with STATCOM in the 57-bus system were improved from 1.063 pu, 0.90 pu and 0.9683 pu to 1.039 pu, 0.9796 pu and 1.0144 pu, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信