{"title":"南非电网同步补偿器的回归仿真与补偿技术","authors":"Christopher Africa, U. B. Akuru, M. Kamper","doi":"10.1109/ROBOMECH.2019.8704841","DOIUrl":null,"url":null,"abstract":"With an increased penetration of renewable energy sources such as solar and wind in the South African power network, maintaining power system stability during network disturbance poses a major challenge. This paper is used to describe how synchronous compensators generally help to boost grid inertia and improve network dynamics in the event of a disturbance. The paper is also used to describe the functioning of a new type of synchronous compensator—the wound-field flux switching compensator (WF-FSC). Experimental tests conducted on a prototype shows that the WF-FSC does not only provide a more reliable technology, but it can also extend the reactive power range by operating without any field current due to saliency.","PeriodicalId":344332,"journal":{"name":"2019 Southern African Universities Power Engineering Conference/Robotics and Mechatronics/Pattern Recognition Association of South Africa (SAUPEC/RobMech/PRASA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Bringing Back the Synchronous Compensator for the South Africa Power Network—Simulation and Compensator Technology\",\"authors\":\"Christopher Africa, U. B. Akuru, M. Kamper\",\"doi\":\"10.1109/ROBOMECH.2019.8704841\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With an increased penetration of renewable energy sources such as solar and wind in the South African power network, maintaining power system stability during network disturbance poses a major challenge. This paper is used to describe how synchronous compensators generally help to boost grid inertia and improve network dynamics in the event of a disturbance. The paper is also used to describe the functioning of a new type of synchronous compensator—the wound-field flux switching compensator (WF-FSC). Experimental tests conducted on a prototype shows that the WF-FSC does not only provide a more reliable technology, but it can also extend the reactive power range by operating without any field current due to saliency.\",\"PeriodicalId\":344332,\"journal\":{\"name\":\"2019 Southern African Universities Power Engineering Conference/Robotics and Mechatronics/Pattern Recognition Association of South Africa (SAUPEC/RobMech/PRASA)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 Southern African Universities Power Engineering Conference/Robotics and Mechatronics/Pattern Recognition Association of South Africa (SAUPEC/RobMech/PRASA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ROBOMECH.2019.8704841\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Southern African Universities Power Engineering Conference/Robotics and Mechatronics/Pattern Recognition Association of South Africa (SAUPEC/RobMech/PRASA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROBOMECH.2019.8704841","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Bringing Back the Synchronous Compensator for the South Africa Power Network—Simulation and Compensator Technology
With an increased penetration of renewable energy sources such as solar and wind in the South African power network, maintaining power system stability during network disturbance poses a major challenge. This paper is used to describe how synchronous compensators generally help to boost grid inertia and improve network dynamics in the event of a disturbance. The paper is also used to describe the functioning of a new type of synchronous compensator—the wound-field flux switching compensator (WF-FSC). Experimental tests conducted on a prototype shows that the WF-FSC does not only provide a more reliable technology, but it can also extend the reactive power range by operating without any field current due to saliency.