分而治之的框架与特征划分概念

Vijayakumar Kadappa, A. Negi
{"title":"分而治之的框架与特征划分概念","authors":"Vijayakumar Kadappa, A. Negi","doi":"10.1109/PUNECON.2018.8745391","DOIUrl":null,"url":null,"abstract":"Divide-and-Conquer (DC) approach is a classical well-adopted paradigm for designing algorithms. In current big data scenarios, processing of voluminous and variety of data is required. One of the characteristics is, large-dimensional data that needs to be analyzed; for example, high resolution images used in social media are used for sentiment analysis. Our research is oriented towards discovering approaches where stage-by-stage processing is done to bring out most salient features from high-dimensional data. However, we observe that data block processing, in most of the conventional approaches, does not scale well for higher dimensionality. Instead, we think of making blocks along the feature set and we propose a divideand-conquer based feature extraction framework based on feature set partitioning. We demonstrate the effectiveness of the proposed framework using various feature set partitioning based PCA approaches.","PeriodicalId":166677,"journal":{"name":"2018 IEEE Punecon","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Divide and Conquer Framework with Feature Partitioning Concepts\",\"authors\":\"Vijayakumar Kadappa, A. Negi\",\"doi\":\"10.1109/PUNECON.2018.8745391\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Divide-and-Conquer (DC) approach is a classical well-adopted paradigm for designing algorithms. In current big data scenarios, processing of voluminous and variety of data is required. One of the characteristics is, large-dimensional data that needs to be analyzed; for example, high resolution images used in social media are used for sentiment analysis. Our research is oriented towards discovering approaches where stage-by-stage processing is done to bring out most salient features from high-dimensional data. However, we observe that data block processing, in most of the conventional approaches, does not scale well for higher dimensionality. Instead, we think of making blocks along the feature set and we propose a divideand-conquer based feature extraction framework based on feature set partitioning. We demonstrate the effectiveness of the proposed framework using various feature set partitioning based PCA approaches.\",\"PeriodicalId\":166677,\"journal\":{\"name\":\"2018 IEEE Punecon\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Punecon\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PUNECON.2018.8745391\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Punecon","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PUNECON.2018.8745391","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

分治法(DC)是一种经典的算法设计范式。在当前的大数据场景中,需要处理的数据量大、种类多。其中一个特点是,需要分析的数据维度大;例如,社交媒体上使用的高分辨率图像用于情感分析。我们的研究方向是寻找一种方法,在这种方法中,通过逐步处理来从高维数据中提取出最显著的特征。然而,我们观察到,在大多数传统方法中,数据块处理不能很好地扩展到更高的维度。相反,我们考虑沿特征集划分块,并提出了基于特征集划分的分而治之的特征提取框架。我们使用各种基于特征集划分的PCA方法证明了所提出框架的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Divide and Conquer Framework with Feature Partitioning Concepts
Divide-and-Conquer (DC) approach is a classical well-adopted paradigm for designing algorithms. In current big data scenarios, processing of voluminous and variety of data is required. One of the characteristics is, large-dimensional data that needs to be analyzed; for example, high resolution images used in social media are used for sentiment analysis. Our research is oriented towards discovering approaches where stage-by-stage processing is done to bring out most salient features from high-dimensional data. However, we observe that data block processing, in most of the conventional approaches, does not scale well for higher dimensionality. Instead, we think of making blocks along the feature set and we propose a divideand-conquer based feature extraction framework based on feature set partitioning. We demonstrate the effectiveness of the proposed framework using various feature set partitioning based PCA approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信