{"title":"不可靠信道下未知RFID标签数量的基数估计方案","authors":"Tiancong Wang, Bin Wang","doi":"10.1109/SmartIoT55134.2022.00016","DOIUrl":null,"url":null,"abstract":"In recent years, RFID technologies have been widely used in real-life applications, including supply chain manage-ment, warehouse tracking, etc. One of the concerns is the estimation of the number of interested tags. The existence of unknown tags will affect normal operation and management for RFID systems. Existing protocols for estimating the number of unknown tags generally assume ideal communication channels. In practice, there may exist environment interference that affects the transmission from tags to a RFID reader. In this paper, we study the problem of estimating the number of unknown tags under unreliable channels, and propose a cardinality estimation scheme CEUT(Cardinality Estimation for Unknown Tags under unreliable channels). The reader collects responses from all tags after running the Aloha protocol. The number of non-empty slots in the response frame increases due to the presence of unknown tags is designed based on the number of empty slots in the predicted frame converted into non-empty slots in the response frame and the channel noise parameter. The simulation results show that, under the unreliable channel, the estimation result scheme yielded by CEUT is more robust than other existing schemes, and can achieve therequired estimation accuracy.","PeriodicalId":422269,"journal":{"name":"2022 IEEE International Conference on Smart Internet of Things (SmartIoT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A cardinality estimation scheme for the number of unknown RFID tags under unreliable channels\",\"authors\":\"Tiancong Wang, Bin Wang\",\"doi\":\"10.1109/SmartIoT55134.2022.00016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, RFID technologies have been widely used in real-life applications, including supply chain manage-ment, warehouse tracking, etc. One of the concerns is the estimation of the number of interested tags. The existence of unknown tags will affect normal operation and management for RFID systems. Existing protocols for estimating the number of unknown tags generally assume ideal communication channels. In practice, there may exist environment interference that affects the transmission from tags to a RFID reader. In this paper, we study the problem of estimating the number of unknown tags under unreliable channels, and propose a cardinality estimation scheme CEUT(Cardinality Estimation for Unknown Tags under unreliable channels). The reader collects responses from all tags after running the Aloha protocol. The number of non-empty slots in the response frame increases due to the presence of unknown tags is designed based on the number of empty slots in the predicted frame converted into non-empty slots in the response frame and the channel noise parameter. The simulation results show that, under the unreliable channel, the estimation result scheme yielded by CEUT is more robust than other existing schemes, and can achieve therequired estimation accuracy.\",\"PeriodicalId\":422269,\"journal\":{\"name\":\"2022 IEEE International Conference on Smart Internet of Things (SmartIoT)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Smart Internet of Things (SmartIoT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SmartIoT55134.2022.00016\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Smart Internet of Things (SmartIoT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SmartIoT55134.2022.00016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
摘要
近年来,RFID技术在现实生活中得到了广泛的应用,包括供应链管理、仓库跟踪等。其中一个问题是对感兴趣的标签数量的估计。未知标签的存在会影响RFID系统的正常运行和管理。现有用于估计未知标签数量的协议通常假设理想的通信信道。在实际应用中,可能存在环境干扰,影响从标签到RFID阅读器的传输。本文研究了不可靠信道下未知标签数量的估计问题,提出了一种不可靠信道下未知标签的基数估计方案CEUT(cardinality estimation for unknown tags under不可靠信道)。阅读器在运行Aloha协议后收集来自所有标签的响应。响应帧中由于未知标签的存在而增加的非空槽数是根据预测帧中转换为响应帧中的非空槽数和信道噪声参数来设计的。仿真结果表明,在不可靠信道下,CEUT估计结果方案比其他方案具有更强的鲁棒性,能够达到要求的估计精度。
A cardinality estimation scheme for the number of unknown RFID tags under unreliable channels
In recent years, RFID technologies have been widely used in real-life applications, including supply chain manage-ment, warehouse tracking, etc. One of the concerns is the estimation of the number of interested tags. The existence of unknown tags will affect normal operation and management for RFID systems. Existing protocols for estimating the number of unknown tags generally assume ideal communication channels. In practice, there may exist environment interference that affects the transmission from tags to a RFID reader. In this paper, we study the problem of estimating the number of unknown tags under unreliable channels, and propose a cardinality estimation scheme CEUT(Cardinality Estimation for Unknown Tags under unreliable channels). The reader collects responses from all tags after running the Aloha protocol. The number of non-empty slots in the response frame increases due to the presence of unknown tags is designed based on the number of empty slots in the predicted frame converted into non-empty slots in the response frame and the channel noise parameter. The simulation results show that, under the unreliable channel, the estimation result scheme yielded by CEUT is more robust than other existing schemes, and can achieve therequired estimation accuracy.