小尺度社会动态环境下的自适应人脸识别

M. Zarkowski
{"title":"小尺度社会动态环境下的自适应人脸识别","authors":"M. Zarkowski","doi":"10.1109/MMAR.2015.7283890","DOIUrl":null,"url":null,"abstract":"This article focuses on the problem of modifying the standard face identification approach for use in small-scale social dynamic environments, by focusing on adaptability rather than robustness. A design of adaptive face identification system is presented, along with the employed methods of online learning. The problem of ensuing bias-variance dilemma of an adaptive system is described and solved. The system is shown to be able to aptly adapt to new information and changes the environment, the final classification rate on MUG database was near 99%.","PeriodicalId":166287,"journal":{"name":"2014 19th International Conference on Methods and Models in Automation and Robotics (MMAR)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Adaptive face identification for small-scale social dynamic environment\",\"authors\":\"M. Zarkowski\",\"doi\":\"10.1109/MMAR.2015.7283890\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article focuses on the problem of modifying the standard face identification approach for use in small-scale social dynamic environments, by focusing on adaptability rather than robustness. A design of adaptive face identification system is presented, along with the employed methods of online learning. The problem of ensuing bias-variance dilemma of an adaptive system is described and solved. The system is shown to be able to aptly adapt to new information and changes the environment, the final classification rate on MUG database was near 99%.\",\"PeriodicalId\":166287,\"journal\":{\"name\":\"2014 19th International Conference on Methods and Models in Automation and Robotics (MMAR)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 19th International Conference on Methods and Models in Automation and Robotics (MMAR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MMAR.2015.7283890\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 19th International Conference on Methods and Models in Automation and Robotics (MMAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMAR.2015.7283890","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

这篇文章的重点是修改标准的人脸识别方法在小规模的社会动态环境中使用的问题,通过关注适应性而不是鲁棒性。提出了一种自适应人脸识别系统的设计方案,并给出了采用在线学习的方法。描述并解决了自适应系统随之而来的偏方差困境问题。结果表明,该系统具有较强的适应新信息和环境变化的能力,在MUG数据库上的最终分类率接近99%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive face identification for small-scale social dynamic environment
This article focuses on the problem of modifying the standard face identification approach for use in small-scale social dynamic environments, by focusing on adaptability rather than robustness. A design of adaptive face identification system is presented, along with the employed methods of online learning. The problem of ensuing bias-variance dilemma of an adaptive system is described and solved. The system is shown to be able to aptly adapt to new information and changes the environment, the final classification rate on MUG database was near 99%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信