基于偏好漂移项聚类的动态推荐系统改进

Charinya Wangwatcharakul, S. Wongthanavasu
{"title":"基于偏好漂移项聚类的动态推荐系统改进","authors":"Charinya Wangwatcharakul, S. Wongthanavasu","doi":"10.1109/JCSSE.2018.8457395","DOIUrl":null,"url":null,"abstract":"The recommender system is an efficient tool for online application, which exploits historical user rating on item to make recommendations on items to users. This paper aims to enhance dynamic recommender systems under volatile user preference drifts. It proposed an algorithm to solve sparse data by using Gaussian mixture model to fill in data matrix for sparsity reduction and improve more completely ratings prediction. Subsequently, it utilizes item clustering and linear regression technique to predict the future interests of users in category based and additionally uses the nearest neighbor method to prevent over-fitting. The experimental results show that the proposed approach provides the better performance on rating prediction when compared with the state-of-the-art dynamic recommendation algorithms.","PeriodicalId":338973,"journal":{"name":"2018 15th International Joint Conference on Computer Science and Software Engineering (JCSSE)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Improving Dynamic Recommender System Based on Item Clustering for Preference Drifts\",\"authors\":\"Charinya Wangwatcharakul, S. Wongthanavasu\",\"doi\":\"10.1109/JCSSE.2018.8457395\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The recommender system is an efficient tool for online application, which exploits historical user rating on item to make recommendations on items to users. This paper aims to enhance dynamic recommender systems under volatile user preference drifts. It proposed an algorithm to solve sparse data by using Gaussian mixture model to fill in data matrix for sparsity reduction and improve more completely ratings prediction. Subsequently, it utilizes item clustering and linear regression technique to predict the future interests of users in category based and additionally uses the nearest neighbor method to prevent over-fitting. The experimental results show that the proposed approach provides the better performance on rating prediction when compared with the state-of-the-art dynamic recommendation algorithms.\",\"PeriodicalId\":338973,\"journal\":{\"name\":\"2018 15th International Joint Conference on Computer Science and Software Engineering (JCSSE)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 15th International Joint Conference on Computer Science and Software Engineering (JCSSE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/JCSSE.2018.8457395\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 15th International Joint Conference on Computer Science and Software Engineering (JCSSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/JCSSE.2018.8457395","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

推荐系统是一种高效的在线应用工具,它利用用户对商品的历史评价向用户推荐商品。本文旨在增强不稳定用户偏好漂移下的动态推荐系统。提出了一种求解稀疏数据的算法,利用高斯混合模型填充数据矩阵来降低稀疏度,提高更完整的评级预测。随后,利用项目聚类和线性回归技术,在基于类别的基础上预测用户未来的兴趣,并使用最近邻方法防止过拟合。实验结果表明,与目前最先进的动态推荐算法相比,该方法具有更好的评级预测性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improving Dynamic Recommender System Based on Item Clustering for Preference Drifts
The recommender system is an efficient tool for online application, which exploits historical user rating on item to make recommendations on items to users. This paper aims to enhance dynamic recommender systems under volatile user preference drifts. It proposed an algorithm to solve sparse data by using Gaussian mixture model to fill in data matrix for sparsity reduction and improve more completely ratings prediction. Subsequently, it utilizes item clustering and linear regression technique to predict the future interests of users in category based and additionally uses the nearest neighbor method to prevent over-fitting. The experimental results show that the proposed approach provides the better performance on rating prediction when compared with the state-of-the-art dynamic recommendation algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信