有限字母的相对熵和rsamnyi散度作为总变异距离函数的上界

I. Sason, S. Verdú
{"title":"有限字母的相对熵和rsamnyi散度作为总变异距离函数的上界","authors":"I. Sason, S. Verdú","doi":"10.1109/ITWF.2015.7360766","DOIUrl":null,"url":null,"abstract":"A new upper bound on the relative entropy is derived as a function of the total variation distance for probability measures defined on a common finite alphabet. The bound improves a previously reported bound by Csiszár and Talata. It is further extended to an upper bound on the Rényi divergence of an arbitrary non-negative order (including ∞) as a function of the total variation distance.","PeriodicalId":281890,"journal":{"name":"2015 IEEE Information Theory Workshop - Fall (ITW)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":"{\"title\":\"Upper bounds on the relative entropy and Rényi divergence as a function of total variation distance for finite alphabets\",\"authors\":\"I. Sason, S. Verdú\",\"doi\":\"10.1109/ITWF.2015.7360766\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new upper bound on the relative entropy is derived as a function of the total variation distance for probability measures defined on a common finite alphabet. The bound improves a previously reported bound by Csiszár and Talata. It is further extended to an upper bound on the Rényi divergence of an arbitrary non-negative order (including ∞) as a function of the total variation distance.\",\"PeriodicalId\":281890,\"journal\":{\"name\":\"2015 IEEE Information Theory Workshop - Fall (ITW)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"29\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE Information Theory Workshop - Fall (ITW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITWF.2015.7360766\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Information Theory Workshop - Fall (ITW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITWF.2015.7360766","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

摘要

本文导出了相对熵的一个新的上界,它是定义在一般有限字母上的概率测度的总变异距离的函数。该绑定改进了先前由Csiszár和Talata报道的绑定。进一步将其推广到任意非负阶(包括∞)的r nyi散度作为总变异距离的函数的上界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Upper bounds on the relative entropy and Rényi divergence as a function of total variation distance for finite alphabets
A new upper bound on the relative entropy is derived as a function of the total variation distance for probability measures defined on a common finite alphabet. The bound improves a previously reported bound by Csiszár and Talata. It is further extended to an upper bound on the Rényi divergence of an arbitrary non-negative order (including ∞) as a function of the total variation distance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信