{"title":"用于12W热管理的PCB中的铜币Over Thermal VIA","authors":"Marcus Miguel V. Vicedo, F. Cruz, Ramon G. Garcia","doi":"10.1109/APCCAS50809.2020.9301674","DOIUrl":null,"url":null,"abstract":"This work developed a copper (Cu) coin structure embedded on a printed circuit board (PCB) to dissipate a 12 W peak power out of the device system working at less than 60 °C. The designed Cu coin was based on the manufacturing limitations and allowed the thermal setup to be mounted on the bottom side of the board for automated test equipment (ATE) applications of the device. Thermal simulations through computational fluid dynamics (CFD) were analyzed and presented both for Cu coin and thermal vertical interconnect access (VIA), to quantify the thermal performances and compare the thermal benefits. Size variations on the designed Cu coin were investigated and quantified setting a thermal decay rate per change in dimension. The actual thermal measurement for the fabricated Cu coin design was presented on the experimental results, matching the simulation values and proving the viability of thermal Cu coin.","PeriodicalId":127075,"journal":{"name":"2020 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Copper Coin Over Thermal VIA in PCB for Thermal Management of 12W\",\"authors\":\"Marcus Miguel V. Vicedo, F. Cruz, Ramon G. Garcia\",\"doi\":\"10.1109/APCCAS50809.2020.9301674\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work developed a copper (Cu) coin structure embedded on a printed circuit board (PCB) to dissipate a 12 W peak power out of the device system working at less than 60 °C. The designed Cu coin was based on the manufacturing limitations and allowed the thermal setup to be mounted on the bottom side of the board for automated test equipment (ATE) applications of the device. Thermal simulations through computational fluid dynamics (CFD) were analyzed and presented both for Cu coin and thermal vertical interconnect access (VIA), to quantify the thermal performances and compare the thermal benefits. Size variations on the designed Cu coin were investigated and quantified setting a thermal decay rate per change in dimension. The actual thermal measurement for the fabricated Cu coin design was presented on the experimental results, matching the simulation values and proving the viability of thermal Cu coin.\",\"PeriodicalId\":127075,\"journal\":{\"name\":\"2020 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APCCAS50809.2020.9301674\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APCCAS50809.2020.9301674","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Copper Coin Over Thermal VIA in PCB for Thermal Management of 12W
This work developed a copper (Cu) coin structure embedded on a printed circuit board (PCB) to dissipate a 12 W peak power out of the device system working at less than 60 °C. The designed Cu coin was based on the manufacturing limitations and allowed the thermal setup to be mounted on the bottom side of the board for automated test equipment (ATE) applications of the device. Thermal simulations through computational fluid dynamics (CFD) were analyzed and presented both for Cu coin and thermal vertical interconnect access (VIA), to quantify the thermal performances and compare the thermal benefits. Size variations on the designed Cu coin were investigated and quantified setting a thermal decay rate per change in dimension. The actual thermal measurement for the fabricated Cu coin design was presented on the experimental results, matching the simulation values and proving the viability of thermal Cu coin.