{"title":"指环素数的来源","authors":"Didem Yeşil, Didem KARALARLIOĞLU CAMCI","doi":"10.53570/jnt.1189651","DOIUrl":null,"url":null,"abstract":"In this study, we define a new concept, i.e., source of primeness of a ring $R$, as $P_{R} := \\bigcap_{a\\in R} S_{R}^{a}$ such that $S_{R}^{a}:=\\{b\\in R \\mid aRb=(0)\\}$. We then examine some basic properties of $P_{R}$ related to the ring’s idempotent elements, nilpotent elements, zero divisor elements, and identity elements. Finally, we discuss the need for further research.","PeriodicalId":347850,"journal":{"name":"Journal of New Theory","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Source of Primeness of Rings\",\"authors\":\"Didem Yeşil, Didem KARALARLIOĞLU CAMCI\",\"doi\":\"10.53570/jnt.1189651\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, we define a new concept, i.e., source of primeness of a ring $R$, as $P_{R} := \\\\bigcap_{a\\\\in R} S_{R}^{a}$ such that $S_{R}^{a}:=\\\\{b\\\\in R \\\\mid aRb=(0)\\\\}$. We then examine some basic properties of $P_{R}$ related to the ring’s idempotent elements, nilpotent elements, zero divisor elements, and identity elements. Finally, we discuss the need for further research.\",\"PeriodicalId\":347850,\"journal\":{\"name\":\"Journal of New Theory\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of New Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.53570/jnt.1189651\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of New Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.53570/jnt.1189651","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
在本研究中,我们定义了一个新的概念,即环的素数源$R$为$P_{R} := \bigcap_{a\in R} S_{R}^{a}$,使得$S_{R}^{a}:=\{b\in R \mid aRb=(0)\}$。然后我们研究了$P_{R}$与环的幂等元素、幂零元素、零因子元素和单位元素有关的一些基本性质。最后,讨论了需要进一步研究的问题。
In this study, we define a new concept, i.e., source of primeness of a ring $R$, as $P_{R} := \bigcap_{a\in R} S_{R}^{a}$ such that $S_{R}^{a}:=\{b\in R \mid aRb=(0)\}$. We then examine some basic properties of $P_{R}$ related to the ring’s idempotent elements, nilpotent elements, zero divisor elements, and identity elements. Finally, we discuss the need for further research.