{"title":"从计算特征中学习感知纹理相似度和相关属性","authors":"Jianwen Lou, Lin Qi, Junyu Dong, Hui Yu, G. Zhong","doi":"10.1109/IJCNN.2016.7727516","DOIUrl":null,"url":null,"abstract":"Previous work has shown that perceptual texture similarity and relative attributes cannot be well described by computational features. In this paper, we propose to predict human's visual perception of texture images by learning a non-linear mapping from computational feature space to perceptual space. Hand-crafted features and deep features, which were successfully applied in texture classification tasks, were extracted and used to train Random Forest and rankSVM models against perceptual data from psychophysical experiments. Three texture datasets were used to test our proposed method and the experiments show that the predictions of such learnt models are in high correlation with human's results.","PeriodicalId":109405,"journal":{"name":"2016 International Joint Conference on Neural Networks (IJCNN)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Learning perceptual texture similarity and relative attributes from computational features\",\"authors\":\"Jianwen Lou, Lin Qi, Junyu Dong, Hui Yu, G. Zhong\",\"doi\":\"10.1109/IJCNN.2016.7727516\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Previous work has shown that perceptual texture similarity and relative attributes cannot be well described by computational features. In this paper, we propose to predict human's visual perception of texture images by learning a non-linear mapping from computational feature space to perceptual space. Hand-crafted features and deep features, which were successfully applied in texture classification tasks, were extracted and used to train Random Forest and rankSVM models against perceptual data from psychophysical experiments. Three texture datasets were used to test our proposed method and the experiments show that the predictions of such learnt models are in high correlation with human's results.\",\"PeriodicalId\":109405,\"journal\":{\"name\":\"2016 International Joint Conference on Neural Networks (IJCNN)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 International Joint Conference on Neural Networks (IJCNN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN.2016.7727516\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Joint Conference on Neural Networks (IJCNN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2016.7727516","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Learning perceptual texture similarity and relative attributes from computational features
Previous work has shown that perceptual texture similarity and relative attributes cannot be well described by computational features. In this paper, we propose to predict human's visual perception of texture images by learning a non-linear mapping from computational feature space to perceptual space. Hand-crafted features and deep features, which were successfully applied in texture classification tasks, were extracted and used to train Random Forest and rankSVM models against perceptual data from psychophysical experiments. Three texture datasets were used to test our proposed method and the experiments show that the predictions of such learnt models are in high correlation with human's results.