利用Karhunen-Loeve变换确定摄像机位置的分析

P. Quick, D. Capson
{"title":"利用Karhunen-Loeve变换确定摄像机位置的分析","authors":"P. Quick, D. Capson","doi":"10.1109/IAI.2000.839577","DOIUrl":null,"url":null,"abstract":"The Karhunen-Loeve transform (KLT) can be used to compress sets of correlated visual data. Human faces and object recognition are popular areas of current research that use KLT-based methods. The KLT can also be used to compress visual data corresponding to a camera moved translationally and/or rotationally relative to a scene. Positioning of a camera relative to a scene can then be derived accurately using KLT feature vectors; this finds application in robotics and autonomous navigation. Various factors affect the accuracy and speed of such position determination including the number of KLT vectors used, the number of images used to perform the KLT, the number of images used in the comparison set and the size of the movement range. This paper investigates the performance of the KLT with a series of experiments determining a camera's rotational position relative to a generic laboratory scene.","PeriodicalId":224112,"journal":{"name":"4th IEEE Southwest Symposium on Image Analysis and Interpretation","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Analysis of determining camera position via Karhunen-Loeve transform\",\"authors\":\"P. Quick, D. Capson\",\"doi\":\"10.1109/IAI.2000.839577\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Karhunen-Loeve transform (KLT) can be used to compress sets of correlated visual data. Human faces and object recognition are popular areas of current research that use KLT-based methods. The KLT can also be used to compress visual data corresponding to a camera moved translationally and/or rotationally relative to a scene. Positioning of a camera relative to a scene can then be derived accurately using KLT feature vectors; this finds application in robotics and autonomous navigation. Various factors affect the accuracy and speed of such position determination including the number of KLT vectors used, the number of images used to perform the KLT, the number of images used in the comparison set and the size of the movement range. This paper investigates the performance of the KLT with a series of experiments determining a camera's rotational position relative to a generic laboratory scene.\",\"PeriodicalId\":224112,\"journal\":{\"name\":\"4th IEEE Southwest Symposium on Image Analysis and Interpretation\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"4th IEEE Southwest Symposium on Image Analysis and Interpretation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IAI.2000.839577\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"4th IEEE Southwest Symposium on Image Analysis and Interpretation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAI.2000.839577","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

Karhunen-Loeve变换(KLT)可用于压缩相关视觉数据集。人脸和物体识别是当前使用基于klt的方法研究的热门领域。KLT还可以用于压缩与摄像机相对于场景的平移和/或旋转移动相对应的视觉数据。然后可以使用KLT特征向量准确地导出相机相对于场景的定位;这在机器人和自主导航中得到了应用。影响这种位置确定的准确性和速度的因素有很多,包括使用的KLT向量的数量、用于执行KLT的图像的数量、比较集中使用的图像的数量以及移动范围的大小。本文通过一系列实验来研究KLT的性能,这些实验确定了相机相对于一般实验室场景的旋转位置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis of determining camera position via Karhunen-Loeve transform
The Karhunen-Loeve transform (KLT) can be used to compress sets of correlated visual data. Human faces and object recognition are popular areas of current research that use KLT-based methods. The KLT can also be used to compress visual data corresponding to a camera moved translationally and/or rotationally relative to a scene. Positioning of a camera relative to a scene can then be derived accurately using KLT feature vectors; this finds application in robotics and autonomous navigation. Various factors affect the accuracy and speed of such position determination including the number of KLT vectors used, the number of images used to perform the KLT, the number of images used in the comparison set and the size of the movement range. This paper investigates the performance of the KLT with a series of experiments determining a camera's rotational position relative to a generic laboratory scene.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信