使用LMS算法配置堆栈过滤器

N. Ansari, Y. Huang, J. Lin
{"title":"使用LMS算法配置堆栈过滤器","authors":"N. Ansari, Y. Huang, J. Lin","doi":"10.1109/NNSP.1991.239484","DOIUrl":null,"url":null,"abstract":"Stack filters are a class of sliding-window nonlinear digital filters that possess the weak superposition property (threshold decomposition) and the ordering property known as the stacking property. They have been demonstrated to be robust in suppressing noise. A new method based on the least means squares (LMS) algorithm is developed to adaptively configure a stack filter. Experimental results are presented to demonstrate the effectiveness of the proposed method to noise suppression.<<ETX>>","PeriodicalId":354832,"journal":{"name":"Neural Networks for Signal Processing Proceedings of the 1991 IEEE Workshop","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Configuring stack filters by the LMS algorithm\",\"authors\":\"N. Ansari, Y. Huang, J. Lin\",\"doi\":\"10.1109/NNSP.1991.239484\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Stack filters are a class of sliding-window nonlinear digital filters that possess the weak superposition property (threshold decomposition) and the ordering property known as the stacking property. They have been demonstrated to be robust in suppressing noise. A new method based on the least means squares (LMS) algorithm is developed to adaptively configure a stack filter. Experimental results are presented to demonstrate the effectiveness of the proposed method to noise suppression.<<ETX>>\",\"PeriodicalId\":354832,\"journal\":{\"name\":\"Neural Networks for Signal Processing Proceedings of the 1991 IEEE Workshop\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1991-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neural Networks for Signal Processing Proceedings of the 1991 IEEE Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NNSP.1991.239484\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Networks for Signal Processing Proceedings of the 1991 IEEE Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NNSP.1991.239484","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

堆栈滤波器是一类具有弱叠加性(阈值分解)和有序性(即叠加性)的滑动窗口非线性数字滤波器。它们已被证明在抑制噪声方面很强健。提出了一种基于最小均方差(LMS)算法的自适应配置堆栈滤波器的新方法。实验结果证明了该方法对噪声抑制的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Configuring stack filters by the LMS algorithm
Stack filters are a class of sliding-window nonlinear digital filters that possess the weak superposition property (threshold decomposition) and the ordering property known as the stacking property. They have been demonstrated to be robust in suppressing noise. A new method based on the least means squares (LMS) algorithm is developed to adaptively configure a stack filter. Experimental results are presented to demonstrate the effectiveness of the proposed method to noise suppression.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信