基于集成协同进化的分类问题算法

Vũ Văn Trường, Bùi Thu Lâm, N. Trung
{"title":"基于集成协同进化的分类问题算法","authors":"Vũ Văn Trường, Bùi Thu Lâm, N. Trung","doi":"10.32913/MIC-ICT-RESEARCH.V2019.N1.852","DOIUrl":null,"url":null,"abstract":"In this paper, the authors propose a dual-population co-evolutionary approach using ensemble learning approach (E-SOCA)  to  simultaneously  solve  both  feature  subset selection  and  optimal  classifier  design.  Different  from previous  studies  where  each  population  retains  only  one best individual (Elite) after co-evolution, in this study, an elite  community  will  be  stored  and  calculated  together through  an  ensemble  learning  algorithm  to  produce  the final    classification    result.    Experimental    results    on standard  UCI  problems  with  a  variety  of  input  features ranging from small to large sizes shows that the proposed algorithm  results  in  more  accuracy  and  stability  than traditional algorithms.","PeriodicalId":432355,"journal":{"name":"Research and Development on Information and Communication Technology","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"An Ensemble Co-Evolutionary based Algorithm for Classification Problems\",\"authors\":\"Vũ Văn Trường, Bùi Thu Lâm, N. Trung\",\"doi\":\"10.32913/MIC-ICT-RESEARCH.V2019.N1.852\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the authors propose a dual-population co-evolutionary approach using ensemble learning approach (E-SOCA)  to  simultaneously  solve  both  feature  subset selection  and  optimal  classifier  design.  Different  from previous  studies  where  each  population  retains  only  one best individual (Elite) after co-evolution, in this study, an elite  community  will  be  stored  and  calculated  together through  an  ensemble  learning  algorithm  to  produce  the final    classification    result.    Experimental    results    on standard  UCI  problems  with  a  variety  of  input  features ranging from small to large sizes shows that the proposed algorithm  results  in  more  accuracy  and  stability  than traditional algorithms.\",\"PeriodicalId\":432355,\"journal\":{\"name\":\"Research and Development on Information and Communication Technology\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Research and Development on Information and Communication Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32913/MIC-ICT-RESEARCH.V2019.N1.852\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research and Development on Information and Communication Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32913/MIC-ICT-RESEARCH.V2019.N1.852","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在本文中,作者提出了一种双种群协同进化方法,利用集成学习方法(E-SOCA)同时解决特征子集选择和最优分类器设计。与以往研究中每个种群在共同进化后只保留一个最优个体(Elite)不同,本研究将通过集成学习算法将一个精英群体存储并一起计算,从而产生最终的分类结果。实验结果表明,与传统算法相比,该算法具有更高的精度和稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Ensemble Co-Evolutionary based Algorithm for Classification Problems
In this paper, the authors propose a dual-population co-evolutionary approach using ensemble learning approach (E-SOCA)  to  simultaneously  solve  both  feature  subset selection  and  optimal  classifier  design.  Different  from previous  studies  where  each  population  retains  only  one best individual (Elite) after co-evolution, in this study, an elite  community  will  be  stored  and  calculated  together through  an  ensemble  learning  algorithm  to  produce  the final    classification    result.    Experimental    results    on standard  UCI  problems  with  a  variety  of  input  features ranging from small to large sizes shows that the proposed algorithm  results  in  more  accuracy  and  stability  than traditional algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信