模糊拓扑群的泛化与机器人碰撞建模*

P. Gnanachandra, A. M. Kumar, M. Seenivasan, R. Ramesh
{"title":"模糊拓扑群的泛化与机器人碰撞建模*","authors":"P. Gnanachandra, A. M. Kumar, M. Seenivasan, R. Ramesh","doi":"10.1109/ICEEICT56924.2023.10157226","DOIUrl":null,"url":null,"abstract":"In this article, we generalize the idea of fuzzy topological group to fuzzy paratopological group, fuzzy semitopological group and fuzzy quasitopological group with illustrated examples and properties. We proved that each fuzzy regular paratopological group is completely regular by using fuzzy uniformities. In addition, we model a robotic crash by using generalizations of fuzzy topological group and nano topology.","PeriodicalId":345324,"journal":{"name":"2023 Second International Conference on Electrical, Electronics, Information and Communication Technologies (ICEEICT)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On generalization of fuzzy topological groups and Modelling Robotic crash*\",\"authors\":\"P. Gnanachandra, A. M. Kumar, M. Seenivasan, R. Ramesh\",\"doi\":\"10.1109/ICEEICT56924.2023.10157226\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we generalize the idea of fuzzy topological group to fuzzy paratopological group, fuzzy semitopological group and fuzzy quasitopological group with illustrated examples and properties. We proved that each fuzzy regular paratopological group is completely regular by using fuzzy uniformities. In addition, we model a robotic crash by using generalizations of fuzzy topological group and nano topology.\",\"PeriodicalId\":345324,\"journal\":{\"name\":\"2023 Second International Conference on Electrical, Electronics, Information and Communication Technologies (ICEEICT)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 Second International Conference on Electrical, Electronics, Information and Communication Technologies (ICEEICT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICEEICT56924.2023.10157226\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 Second International Conference on Electrical, Electronics, Information and Communication Technologies (ICEEICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEEICT56924.2023.10157226","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文将模糊拓扑群的概念推广到模糊准拓扑群、模糊半拓扑群和模糊拟拓扑群,并给出了具体的例子和性质。利用模糊均匀性证明了每一个模糊正则准拓扑群是完全正则的。此外,我们利用模糊拓扑群和纳米拓扑的推广建立了机器人碰撞模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On generalization of fuzzy topological groups and Modelling Robotic crash*
In this article, we generalize the idea of fuzzy topological group to fuzzy paratopological group, fuzzy semitopological group and fuzzy quasitopological group with illustrated examples and properties. We proved that each fuzzy regular paratopological group is completely regular by using fuzzy uniformities. In addition, we model a robotic crash by using generalizations of fuzzy topological group and nano topology.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信