利用机载声发射和pso优化的神经网络进行工具健康监测

T. Zafar, K. Kamal, Rohit Kumar, Z. Sheikh, S. Mathavan, U. Ali
{"title":"利用机载声发射和pso优化的神经网络进行工具健康监测","authors":"T. Zafar, K. Kamal, Rohit Kumar, Z. Sheikh, S. Mathavan, U. Ali","doi":"10.1109/CYBConf.2015.7175945","DOIUrl":null,"url":null,"abstract":"Tool condition monitoring is in major focus nowadays in order to reduce production downtime due to breakdown maintenance, as timely detection of tool wear reduces the production cost. The paper provides an approach to monitor tool health for a CNC turning process using airborne acoustic emission and a PSO (Particle Swarm Optimization) optimized back-propagation neural network. Acoustic signals for good, average, and worn-out tools are recorded through a microphone. Back-propagation neural network are then trained and optimized using PSO algorithm to classify the tool health. PSO-optimized back-propagation neural network shows better performance for tool health classification as compared to simple back-propagation neural networks.","PeriodicalId":177233,"journal":{"name":"2015 IEEE 2nd International Conference on Cybernetics (CYBCONF)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Tool health monitoring using airborne acoustic emission and a PSO-optimized neural network\",\"authors\":\"T. Zafar, K. Kamal, Rohit Kumar, Z. Sheikh, S. Mathavan, U. Ali\",\"doi\":\"10.1109/CYBConf.2015.7175945\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tool condition monitoring is in major focus nowadays in order to reduce production downtime due to breakdown maintenance, as timely detection of tool wear reduces the production cost. The paper provides an approach to monitor tool health for a CNC turning process using airborne acoustic emission and a PSO (Particle Swarm Optimization) optimized back-propagation neural network. Acoustic signals for good, average, and worn-out tools are recorded through a microphone. Back-propagation neural network are then trained and optimized using PSO algorithm to classify the tool health. PSO-optimized back-propagation neural network shows better performance for tool health classification as compared to simple back-propagation neural networks.\",\"PeriodicalId\":177233,\"journal\":{\"name\":\"2015 IEEE 2nd International Conference on Cybernetics (CYBCONF)\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE 2nd International Conference on Cybernetics (CYBCONF)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CYBConf.2015.7175945\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 2nd International Conference on Cybernetics (CYBCONF)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CYBConf.2015.7175945","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

为了减少因故障维修而导致的生产停机时间,刀具状态监测是当今的主要焦点,因为及时检测刀具磨损可以降低生产成本。本文提出了一种利用机载声发射和粒子群算法优化的反向传播神经网络对数控车削加工过程中的刀具健康状况进行监测的方法。良好的、一般的和磨损的工具的声音信号通过麦克风记录下来。然后利用粒子群算法对反向传播神经网络进行训练和优化,对刀具健康状况进行分类。与简单的反向传播神经网络相比,pso优化的反向传播神经网络在刀具健康分类方面表现出更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tool health monitoring using airborne acoustic emission and a PSO-optimized neural network
Tool condition monitoring is in major focus nowadays in order to reduce production downtime due to breakdown maintenance, as timely detection of tool wear reduces the production cost. The paper provides an approach to monitor tool health for a CNC turning process using airborne acoustic emission and a PSO (Particle Swarm Optimization) optimized back-propagation neural network. Acoustic signals for good, average, and worn-out tools are recorded through a microphone. Back-propagation neural network are then trained and optimized using PSO algorithm to classify the tool health. PSO-optimized back-propagation neural network shows better performance for tool health classification as compared to simple back-propagation neural networks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信