非线性平衡与Mayer-Lie插值

Erik I. Verriest
{"title":"非线性平衡与Mayer-Lie插值","authors":"Erik I. Verriest","doi":"10.1109/SSST.2004.1295644","DOIUrl":null,"url":null,"abstract":"The notion of balancing for linear systems is extended to the nonlinear realm. The proposed method of balancing is based upon three principles: 1) balancing should be defined with respect to a nominal flow; 2) only Gramians defined over small time intervals should be used to preserve the accuracy of the linear perturbation model and; 3) linearization should commute with balancing, in the sense that the linearization of a globally balanced model should correspond to the balanced linearized model in the original coordinates. Whereas it is generically possible to define a balanced framework locally, it is not possible to do so globally. Obstruction to the integrability of the Jacobian is generic in dimensions, n > 2. Here we show how to obtain the global balanced realization if the Mayer-Lie conditions are satisfied, and an interpolation method by integrable functions is proposed when this is not the case. The latter thus defines pseudo-balanced realizations.","PeriodicalId":309617,"journal":{"name":"Thirty-Sixth Southeastern Symposium on System Theory, 2004. Proceedings of the","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2004-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Nonlinear balancing and Mayer-Lie interpolation\",\"authors\":\"Erik I. Verriest\",\"doi\":\"10.1109/SSST.2004.1295644\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The notion of balancing for linear systems is extended to the nonlinear realm. The proposed method of balancing is based upon three principles: 1) balancing should be defined with respect to a nominal flow; 2) only Gramians defined over small time intervals should be used to preserve the accuracy of the linear perturbation model and; 3) linearization should commute with balancing, in the sense that the linearization of a globally balanced model should correspond to the balanced linearized model in the original coordinates. Whereas it is generically possible to define a balanced framework locally, it is not possible to do so globally. Obstruction to the integrability of the Jacobian is generic in dimensions, n > 2. Here we show how to obtain the global balanced realization if the Mayer-Lie conditions are satisfied, and an interpolation method by integrable functions is proposed when this is not the case. The latter thus defines pseudo-balanced realizations.\",\"PeriodicalId\":309617,\"journal\":{\"name\":\"Thirty-Sixth Southeastern Symposium on System Theory, 2004. Proceedings of the\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Thirty-Sixth Southeastern Symposium on System Theory, 2004. Proceedings of the\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSST.2004.1295644\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thirty-Sixth Southeastern Symposium on System Theory, 2004. Proceedings of the","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSST.2004.1295644","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

将线性系统平衡的概念推广到非线性领域。所提出的平衡方法基于三个原则:1)平衡应根据标称流量来定义;2)为了保持线性摄动模型的准确性,应该只使用在小时间间隔上定义的格拉姆函数;3)线性化应与平衡交换,即全局平衡模型的线性化应对应于原始坐标下的平衡线性化模型。虽然通常可以在局部定义平衡框架,但不可能在全局定义平衡框架。对雅可比矩阵可积性的阻碍在维数上是一般的,n > 2。本文给出了在满足Mayer-Lie条件的情况下如何实现全局平衡,并在不满足meyer - lie条件的情况下,提出了一种利用可积函数插值的方法。后者因此定义了伪平衡的实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nonlinear balancing and Mayer-Lie interpolation
The notion of balancing for linear systems is extended to the nonlinear realm. The proposed method of balancing is based upon three principles: 1) balancing should be defined with respect to a nominal flow; 2) only Gramians defined over small time intervals should be used to preserve the accuracy of the linear perturbation model and; 3) linearization should commute with balancing, in the sense that the linearization of a globally balanced model should correspond to the balanced linearized model in the original coordinates. Whereas it is generically possible to define a balanced framework locally, it is not possible to do so globally. Obstruction to the integrability of the Jacobian is generic in dimensions, n > 2. Here we show how to obtain the global balanced realization if the Mayer-Lie conditions are satisfied, and an interpolation method by integrable functions is proposed when this is not the case. The latter thus defines pseudo-balanced realizations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信