基于图像的三维重建中的点云噪声和离群值去除

Katja Wolff, Changil Kim, H. Zimmer, Christopher Schroers, M. Botsch, O. Sorkine-Hornung, A. Sorkine-Hornung
{"title":"基于图像的三维重建中的点云噪声和离群值去除","authors":"Katja Wolff, Changil Kim, H. Zimmer, Christopher Schroers, M. Botsch, O. Sorkine-Hornung, A. Sorkine-Hornung","doi":"10.1109/3DV.2016.20","DOIUrl":null,"url":null,"abstract":"Point sets generated by image-based 3D reconstruction techniques are often much noisier than those obtained using active techniques like laser scanning. Therefore, they pose greater challenges to the subsequent surface reconstruction (meshing) stage. We present a simple and effective method for removing noise and outliers from such point sets. Our algorithm uses the input images and corresponding depth maps to remove pixels which are geometrically or photometrically inconsistent with the colored surface implied by the input. This allows standard surface reconstruction methods (such as Poisson surface reconstruction) to perform less smoothing and thus achieve higher quality surfaces with more features. Our algorithm is efficient, easy to implement, and robust to varying amounts of noise. We demonstrate the benefits of our algorithm in combination with a variety of state-of-the-art depth and surface reconstruction methods.","PeriodicalId":425304,"journal":{"name":"2016 Fourth International Conference on 3D Vision (3DV)","volume":"006 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"89","resultStr":"{\"title\":\"Point Cloud Noise and Outlier Removal for Image-Based 3D Reconstruction\",\"authors\":\"Katja Wolff, Changil Kim, H. Zimmer, Christopher Schroers, M. Botsch, O. Sorkine-Hornung, A. Sorkine-Hornung\",\"doi\":\"10.1109/3DV.2016.20\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Point sets generated by image-based 3D reconstruction techniques are often much noisier than those obtained using active techniques like laser scanning. Therefore, they pose greater challenges to the subsequent surface reconstruction (meshing) stage. We present a simple and effective method for removing noise and outliers from such point sets. Our algorithm uses the input images and corresponding depth maps to remove pixels which are geometrically or photometrically inconsistent with the colored surface implied by the input. This allows standard surface reconstruction methods (such as Poisson surface reconstruction) to perform less smoothing and thus achieve higher quality surfaces with more features. Our algorithm is efficient, easy to implement, and robust to varying amounts of noise. We demonstrate the benefits of our algorithm in combination with a variety of state-of-the-art depth and surface reconstruction methods.\",\"PeriodicalId\":425304,\"journal\":{\"name\":\"2016 Fourth International Conference on 3D Vision (3DV)\",\"volume\":\"006 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"89\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 Fourth International Conference on 3D Vision (3DV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/3DV.2016.20\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Fourth International Conference on 3D Vision (3DV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/3DV.2016.20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 89

摘要

基于图像的三维重建技术生成的点集通常比使用激光扫描等主动技术获得的点集噪声大得多。因此,它们对后续的曲面重建(网格划分)阶段提出了更大的挑战。我们提出了一种简单有效的方法来去除这些点集中的噪声和异常值。我们的算法使用输入图像和相应的深度图来去除与输入所暗示的彩色表面在几何或光度上不一致的像素。这允许标准的表面重建方法(如泊松表面重建)执行较少的平滑,从而获得具有更多特征的高质量表面。我们的算法高效,易于实现,并且对不同数量的噪声具有鲁棒性。我们展示了我们的算法与各种最先进的深度和表面重建方法相结合的好处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Point Cloud Noise and Outlier Removal for Image-Based 3D Reconstruction
Point sets generated by image-based 3D reconstruction techniques are often much noisier than those obtained using active techniques like laser scanning. Therefore, they pose greater challenges to the subsequent surface reconstruction (meshing) stage. We present a simple and effective method for removing noise and outliers from such point sets. Our algorithm uses the input images and corresponding depth maps to remove pixels which are geometrically or photometrically inconsistent with the colored surface implied by the input. This allows standard surface reconstruction methods (such as Poisson surface reconstruction) to perform less smoothing and thus achieve higher quality surfaces with more features. Our algorithm is efficient, easy to implement, and robust to varying amounts of noise. We demonstrate the benefits of our algorithm in combination with a variety of state-of-the-art depth and surface reconstruction methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信