Katja Wolff, Changil Kim, H. Zimmer, Christopher Schroers, M. Botsch, O. Sorkine-Hornung, A. Sorkine-Hornung
{"title":"基于图像的三维重建中的点云噪声和离群值去除","authors":"Katja Wolff, Changil Kim, H. Zimmer, Christopher Schroers, M. Botsch, O. Sorkine-Hornung, A. Sorkine-Hornung","doi":"10.1109/3DV.2016.20","DOIUrl":null,"url":null,"abstract":"Point sets generated by image-based 3D reconstruction techniques are often much noisier than those obtained using active techniques like laser scanning. Therefore, they pose greater challenges to the subsequent surface reconstruction (meshing) stage. We present a simple and effective method for removing noise and outliers from such point sets. Our algorithm uses the input images and corresponding depth maps to remove pixels which are geometrically or photometrically inconsistent with the colored surface implied by the input. This allows standard surface reconstruction methods (such as Poisson surface reconstruction) to perform less smoothing and thus achieve higher quality surfaces with more features. Our algorithm is efficient, easy to implement, and robust to varying amounts of noise. We demonstrate the benefits of our algorithm in combination with a variety of state-of-the-art depth and surface reconstruction methods.","PeriodicalId":425304,"journal":{"name":"2016 Fourth International Conference on 3D Vision (3DV)","volume":"006 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"89","resultStr":"{\"title\":\"Point Cloud Noise and Outlier Removal for Image-Based 3D Reconstruction\",\"authors\":\"Katja Wolff, Changil Kim, H. Zimmer, Christopher Schroers, M. Botsch, O. Sorkine-Hornung, A. Sorkine-Hornung\",\"doi\":\"10.1109/3DV.2016.20\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Point sets generated by image-based 3D reconstruction techniques are often much noisier than those obtained using active techniques like laser scanning. Therefore, they pose greater challenges to the subsequent surface reconstruction (meshing) stage. We present a simple and effective method for removing noise and outliers from such point sets. Our algorithm uses the input images and corresponding depth maps to remove pixels which are geometrically or photometrically inconsistent with the colored surface implied by the input. This allows standard surface reconstruction methods (such as Poisson surface reconstruction) to perform less smoothing and thus achieve higher quality surfaces with more features. Our algorithm is efficient, easy to implement, and robust to varying amounts of noise. We demonstrate the benefits of our algorithm in combination with a variety of state-of-the-art depth and surface reconstruction methods.\",\"PeriodicalId\":425304,\"journal\":{\"name\":\"2016 Fourth International Conference on 3D Vision (3DV)\",\"volume\":\"006 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"89\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 Fourth International Conference on 3D Vision (3DV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/3DV.2016.20\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Fourth International Conference on 3D Vision (3DV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/3DV.2016.20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Point Cloud Noise and Outlier Removal for Image-Based 3D Reconstruction
Point sets generated by image-based 3D reconstruction techniques are often much noisier than those obtained using active techniques like laser scanning. Therefore, they pose greater challenges to the subsequent surface reconstruction (meshing) stage. We present a simple and effective method for removing noise and outliers from such point sets. Our algorithm uses the input images and corresponding depth maps to remove pixels which are geometrically or photometrically inconsistent with the colored surface implied by the input. This allows standard surface reconstruction methods (such as Poisson surface reconstruction) to perform less smoothing and thus achieve higher quality surfaces with more features. Our algorithm is efficient, easy to implement, and robust to varying amounts of noise. We demonstrate the benefits of our algorithm in combination with a variety of state-of-the-art depth and surface reconstruction methods.