基于MapReduce的中文研究论文文本相似度检测

Fan Xu, Qiaoming Zhu, Peifeng Li
{"title":"基于MapReduce的中文研究论文文本相似度检测","authors":"Fan Xu, Qiaoming Zhu, Peifeng Li","doi":"10.1109/SNPD.2011.29","DOIUrl":null,"url":null,"abstract":"This paper proposes a novel method to detect text similarity over Chinese research papers using MapReduce paradigm. Our approach differs from the state-of-the-art methods in two aspects. First, we extract the key sentences from Chinese research papers by using some heuristic features and then generate 2-tuple, (document id, key phrase), as the representation of the documents. Second, we design 2-phrase MapReduce algorithm to verify the effectiveness of the generated 2-tuple. For evaluation, we compare the proposed method with other approaches on synthetic corpus. Experimental results review that our method much outperforms the state-of-the-art ones on running time performance while guarantee the Jaccard similarity coefficient.","PeriodicalId":336771,"journal":{"name":"2011 12th ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Detecting Text Similarity over Chinese Research Papers Using MapReduce\",\"authors\":\"Fan Xu, Qiaoming Zhu, Peifeng Li\",\"doi\":\"10.1109/SNPD.2011.29\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a novel method to detect text similarity over Chinese research papers using MapReduce paradigm. Our approach differs from the state-of-the-art methods in two aspects. First, we extract the key sentences from Chinese research papers by using some heuristic features and then generate 2-tuple, (document id, key phrase), as the representation of the documents. Second, we design 2-phrase MapReduce algorithm to verify the effectiveness of the generated 2-tuple. For evaluation, we compare the proposed method with other approaches on synthetic corpus. Experimental results review that our method much outperforms the state-of-the-art ones on running time performance while guarantee the Jaccard similarity coefficient.\",\"PeriodicalId\":336771,\"journal\":{\"name\":\"2011 12th ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 12th ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SNPD.2011.29\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 12th ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SNPD.2011.29","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文提出了一种基于MapReduce范式的中文研究论文文本相似度检测方法。我们的方法与最先进的方法在两个方面不同。首先,我们利用启发式特征提取中文研究论文中的关键句子,然后生成2元组(文档id,关键短语)作为文档的表示。其次,我们设计了2- phase MapReduce算法来验证生成的2-tuple的有效性。为了进行评价,我们将该方法与其他基于合成语料库的方法进行了比较。实验结果表明,该方法在保证Jaccard相似系数的前提下,在运行时间性能上明显优于现有方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Detecting Text Similarity over Chinese Research Papers Using MapReduce
This paper proposes a novel method to detect text similarity over Chinese research papers using MapReduce paradigm. Our approach differs from the state-of-the-art methods in two aspects. First, we extract the key sentences from Chinese research papers by using some heuristic features and then generate 2-tuple, (document id, key phrase), as the representation of the documents. Second, we design 2-phrase MapReduce algorithm to verify the effectiveness of the generated 2-tuple. For evaluation, we compare the proposed method with other approaches on synthetic corpus. Experimental results review that our method much outperforms the state-of-the-art ones on running time performance while guarantee the Jaccard similarity coefficient.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信