Qi Liu, Tian Zhang, Yihang Dan, Shuai Yu, Jian Dai, Kun Xu
{"title":"基于机器学习和进化算法的石墨烯超材料逆设计","authors":"Qi Liu, Tian Zhang, Yihang Dan, Shuai Yu, Jian Dai, Kun Xu","doi":"10.1364/oedi.2019.ow2b.5","DOIUrl":null,"url":null,"abstract":"We propose an intelligent approach to achieve inverse design by different regression algorithms for the double-layers graphene metamaterial (GM) structure. Compared with the ANNs, simple regression algorithms have advantage in accuracy and efficiency.","PeriodicalId":198755,"journal":{"name":"International Photonics and OptoElectronics Meeting 2019 (OFDA, OEDI, ISST, PE, LST, TSA)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inverse design of graphene metamaterial based on machine learning and evolutionary algorithms\",\"authors\":\"Qi Liu, Tian Zhang, Yihang Dan, Shuai Yu, Jian Dai, Kun Xu\",\"doi\":\"10.1364/oedi.2019.ow2b.5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose an intelligent approach to achieve inverse design by different regression algorithms for the double-layers graphene metamaterial (GM) structure. Compared with the ANNs, simple regression algorithms have advantage in accuracy and efficiency.\",\"PeriodicalId\":198755,\"journal\":{\"name\":\"International Photonics and OptoElectronics Meeting 2019 (OFDA, OEDI, ISST, PE, LST, TSA)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Photonics and OptoElectronics Meeting 2019 (OFDA, OEDI, ISST, PE, LST, TSA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1364/oedi.2019.ow2b.5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Photonics and OptoElectronics Meeting 2019 (OFDA, OEDI, ISST, PE, LST, TSA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/oedi.2019.ow2b.5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Inverse design of graphene metamaterial based on machine learning and evolutionary algorithms
We propose an intelligent approach to achieve inverse design by different regression algorithms for the double-layers graphene metamaterial (GM) structure. Compared with the ANNs, simple regression algorithms have advantage in accuracy and efficiency.