基于机器学习和进化算法的石墨烯超材料逆设计

Qi Liu, Tian Zhang, Yihang Dan, Shuai Yu, Jian Dai, Kun Xu
{"title":"基于机器学习和进化算法的石墨烯超材料逆设计","authors":"Qi Liu, Tian Zhang, Yihang Dan, Shuai Yu, Jian Dai, Kun Xu","doi":"10.1364/oedi.2019.ow2b.5","DOIUrl":null,"url":null,"abstract":"We propose an intelligent approach to achieve inverse design by different regression algorithms for the double-layers graphene metamaterial (GM) structure. Compared with the ANNs, simple regression algorithms have advantage in accuracy and efficiency.","PeriodicalId":198755,"journal":{"name":"International Photonics and OptoElectronics Meeting 2019 (OFDA, OEDI, ISST, PE, LST, TSA)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inverse design of graphene metamaterial based on machine learning and evolutionary algorithms\",\"authors\":\"Qi Liu, Tian Zhang, Yihang Dan, Shuai Yu, Jian Dai, Kun Xu\",\"doi\":\"10.1364/oedi.2019.ow2b.5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose an intelligent approach to achieve inverse design by different regression algorithms for the double-layers graphene metamaterial (GM) structure. Compared with the ANNs, simple regression algorithms have advantage in accuracy and efficiency.\",\"PeriodicalId\":198755,\"journal\":{\"name\":\"International Photonics and OptoElectronics Meeting 2019 (OFDA, OEDI, ISST, PE, LST, TSA)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Photonics and OptoElectronics Meeting 2019 (OFDA, OEDI, ISST, PE, LST, TSA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1364/oedi.2019.ow2b.5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Photonics and OptoElectronics Meeting 2019 (OFDA, OEDI, ISST, PE, LST, TSA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/oedi.2019.ow2b.5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种利用不同回归算法实现双层石墨烯超材料(GM)结构逆设计的智能方法。与人工神经网络相比,简单回归算法在精度和效率上都有优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Inverse design of graphene metamaterial based on machine learning and evolutionary algorithms
We propose an intelligent approach to achieve inverse design by different regression algorithms for the double-layers graphene metamaterial (GM) structure. Compared with the ANNs, simple regression algorithms have advantage in accuracy and efficiency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信