基于边缘的机器学习训练数据发现

Ziqiang Feng, S. George, J. Harkes, P. Pillai, R. Klatzky, M. Satyanarayanan
{"title":"基于边缘的机器学习训练数据发现","authors":"Ziqiang Feng, S. George, J. Harkes, P. Pillai, R. Klatzky, M. Satyanarayanan","doi":"10.1109/SEC.2018.00018","DOIUrl":null,"url":null,"abstract":"We show how edge-based early discard of data can greatly improve the productivity of a human expert in assembling a large training set for machine learning. This task may span multiple data sources that are live (e.g., video cameras) or archival (data sets dispersed over the Internet). The critical resource here is the attention of the expert. We describe Eureka, an interactive system that leverages edge computing to greatly improve the productivity of experts in this task. Our experimental results show that Eureka reduces the labeling effort needed to construct a training set by two orders of magnitude relative to a brute-force approach.","PeriodicalId":376439,"journal":{"name":"2018 IEEE/ACM Symposium on Edge Computing (SEC)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Edge-Based Discovery of Training Data for Machine Learning\",\"authors\":\"Ziqiang Feng, S. George, J. Harkes, P. Pillai, R. Klatzky, M. Satyanarayanan\",\"doi\":\"10.1109/SEC.2018.00018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show how edge-based early discard of data can greatly improve the productivity of a human expert in assembling a large training set for machine learning. This task may span multiple data sources that are live (e.g., video cameras) or archival (data sets dispersed over the Internet). The critical resource here is the attention of the expert. We describe Eureka, an interactive system that leverages edge computing to greatly improve the productivity of experts in this task. Our experimental results show that Eureka reduces the labeling effort needed to construct a training set by two orders of magnitude relative to a brute-force approach.\",\"PeriodicalId\":376439,\"journal\":{\"name\":\"2018 IEEE/ACM Symposium on Edge Computing (SEC)\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE/ACM Symposium on Edge Computing (SEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SEC.2018.00018\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE/ACM Symposium on Edge Computing (SEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SEC.2018.00018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

我们展示了基于边缘的数据早期丢弃如何极大地提高人类专家在为机器学习组装大型训练集时的生产力。该任务可能跨越多个实时数据源(例如,摄像机)或存档数据源(分散在Internet上的数据集)。这里的关键资源是专家的注意力。我们描述了Eureka,一个利用边缘计算来大大提高专家在这项任务中的生产力的交互式系统。我们的实验结果表明,与暴力方法相比,Eureka将构建训练集所需的标注工作量减少了两个数量级。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Edge-Based Discovery of Training Data for Machine Learning
We show how edge-based early discard of data can greatly improve the productivity of a human expert in assembling a large training set for machine learning. This task may span multiple data sources that are live (e.g., video cameras) or archival (data sets dispersed over the Internet). The critical resource here is the attention of the expert. We describe Eureka, an interactive system that leverages edge computing to greatly improve the productivity of experts in this task. Our experimental results show that Eureka reduces the labeling effort needed to construct a training set by two orders of magnitude relative to a brute-force approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信