基于迭代秩的聚类方法

S. Perrey, H. Brinck, A. Zielesny
{"title":"基于迭代秩的聚类方法","authors":"S. Perrey, H. Brinck, A. Zielesny","doi":"10.1109/CSB.2003.1227379","DOIUrl":null,"url":null,"abstract":"Recently a new clustering algorithm was developed, useful in phylogenetic systematics and taxonomy. It derives a hierarchy from (dis)similarity data on a simple and rather natural way. It transforms a given dissimilarity by an iterative approach. Each iteration step consists of ranking the objects under consideration according to their pairwise dissimilarity and calculating the Euclidian distance of the resulting rank vectors. We investigate alterations of this order of steps as well as substitute the Euclidian distance by standard statistical measures for series of estimates. We evaluate the resulting different procedures on biological and other data sets of different structure regarding their underlying cluster systems. Thereby, potentials and limits of this kind of iterative approach become obvious.","PeriodicalId":147883,"journal":{"name":"Computational Systems Bioinformatics. CSB2003. Proceedings of the 2003 IEEE Bioinformatics Conference. CSB2003","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Iterative rank based methods for clustering\",\"authors\":\"S. Perrey, H. Brinck, A. Zielesny\",\"doi\":\"10.1109/CSB.2003.1227379\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently a new clustering algorithm was developed, useful in phylogenetic systematics and taxonomy. It derives a hierarchy from (dis)similarity data on a simple and rather natural way. It transforms a given dissimilarity by an iterative approach. Each iteration step consists of ranking the objects under consideration according to their pairwise dissimilarity and calculating the Euclidian distance of the resulting rank vectors. We investigate alterations of this order of steps as well as substitute the Euclidian distance by standard statistical measures for series of estimates. We evaluate the resulting different procedures on biological and other data sets of different structure regarding their underlying cluster systems. Thereby, potentials and limits of this kind of iterative approach become obvious.\",\"PeriodicalId\":147883,\"journal\":{\"name\":\"Computational Systems Bioinformatics. CSB2003. Proceedings of the 2003 IEEE Bioinformatics Conference. CSB2003\",\"volume\":\"54 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Systems Bioinformatics. CSB2003. Proceedings of the 2003 IEEE Bioinformatics Conference. CSB2003\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSB.2003.1227379\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Systems Bioinformatics. CSB2003. Proceedings of the 2003 IEEE Bioinformatics Conference. CSB2003","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSB.2003.1227379","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

近年来,人们提出了一种新的聚类算法,用于系统发育系统分类和分类。它以一种简单而自然的方式从(非)相似度数据中导出层次结构。它通过迭代方法变换给定的不相似性。每个迭代步骤包括根据所考虑的对象的两两不相似度对其进行排序,并计算得到的秩向量的欧几里德距离。我们研究了这个步骤顺序的变化,以及用一系列估计的标准统计度量代替欧几里得距离。我们评估了生物和其他不同结构的数据集对其底层集群系统的不同程序。因此,这种迭代方法的潜力和局限性变得明显。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Iterative rank based methods for clustering
Recently a new clustering algorithm was developed, useful in phylogenetic systematics and taxonomy. It derives a hierarchy from (dis)similarity data on a simple and rather natural way. It transforms a given dissimilarity by an iterative approach. Each iteration step consists of ranking the objects under consideration according to their pairwise dissimilarity and calculating the Euclidian distance of the resulting rank vectors. We investigate alterations of this order of steps as well as substitute the Euclidian distance by standard statistical measures for series of estimates. We evaluate the resulting different procedures on biological and other data sets of different structure regarding their underlying cluster systems. Thereby, potentials and limits of this kind of iterative approach become obvious.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信