递归神经网络的稳定学习算法

P. Guturu, H. Pareek, P. Ananthraj
{"title":"递归神经网络的稳定学习算法","authors":"P. Guturu, H. Pareek, P. Ananthraj","doi":"10.1109/TAI.1991.167094","DOIUrl":null,"url":null,"abstract":"The authors used the Liapunov approach to derive a new set of sufficient conditions that explain the stability of feedforward networks. A simplification of these conditions results in a new recurrent backpropagation algorithm. This algorithm preserves the local updating characteristic of the original algorithm but is, at the same time, found to be quite effective even for problems which offered resistance to solution by L. B. Almeida's (1987) approach.<<ETX>>","PeriodicalId":371778,"journal":{"name":"[Proceedings] Third International Conference on Tools for Artificial Intelligence - TAI 91","volume":"96 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A stable learning algorithm for recurrent neural networks\",\"authors\":\"P. Guturu, H. Pareek, P. Ananthraj\",\"doi\":\"10.1109/TAI.1991.167094\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The authors used the Liapunov approach to derive a new set of sufficient conditions that explain the stability of feedforward networks. A simplification of these conditions results in a new recurrent backpropagation algorithm. This algorithm preserves the local updating characteristic of the original algorithm but is, at the same time, found to be quite effective even for problems which offered resistance to solution by L. B. Almeida's (1987) approach.<<ETX>>\",\"PeriodicalId\":371778,\"journal\":{\"name\":\"[Proceedings] Third International Conference on Tools for Artificial Intelligence - TAI 91\",\"volume\":\"96 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1991-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[Proceedings] Third International Conference on Tools for Artificial Intelligence - TAI 91\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TAI.1991.167094\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[Proceedings] Third International Conference on Tools for Artificial Intelligence - TAI 91","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TAI.1991.167094","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

作者使用Liapunov方法推导出一组新的充分条件来解释前馈网络的稳定性。对这些条件进行简化,得到一种新的循环反向传播算法。该算法保留了原始算法的局部更新特性,但同时发现,即使对于L. B. Almeida(1987)方法无法解决的问题,该算法也相当有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A stable learning algorithm for recurrent neural networks
The authors used the Liapunov approach to derive a new set of sufficient conditions that explain the stability of feedforward networks. A simplification of these conditions results in a new recurrent backpropagation algorithm. This algorithm preserves the local updating characteristic of the original algorithm but is, at the same time, found to be quite effective even for problems which offered resistance to solution by L. B. Almeida's (1987) approach.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信