片上网络的分布式暂存缓冲流量控制

Nicola Concer, M. Petracca, L. Carloni
{"title":"片上网络的分布式暂存缓冲流量控制","authors":"Nicola Concer, M. Petracca, L. Carloni","doi":"10.1145/1450135.1450183","DOIUrl":null,"url":null,"abstract":"The combination of flit-buffer flow control methods and latency-insensitive protocols is an effective solution for networks-on-chip (NoC). Since they both rely on backpressure, the two techniques are easy to combine while offering complementary advantages: low complexity of router design and the ability to cope with long communication channels via automatic wire pipelining. We study various alternative implementations of this idea by considering the combination of three different types of flit-buffer flow control methods and two different classes of channel repeaters (based respectively on flip-flops and relay stations). We characterize the area and performance of the two most promising alternative implementations for NoCs by completing the RTL design and logic synthesis of the repeaters and routers for different channel parallelisms. Finally, we derive high-level abstractions of our circuit designs and we use them to perform system-level simulations under various scenarios for two distinct NoC topologies and various applications. Based on our comparative analysis and experimental results, we propose a NoC design approach that combines the reduction of the router queues to a minimum size with the distribution of flit buffering onto the channels. This approach provides precious flexibility during the physical design phase for many NoCs, particularly in those systems-on-chip that must be designed to meet a tight constraint on the target clock frequency.","PeriodicalId":300268,"journal":{"name":"International Conference on Hardware/Software Codesign and System Synthesis","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2008-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"Distributed flit-buffer flow control for networks-on-chip\",\"authors\":\"Nicola Concer, M. Petracca, L. Carloni\",\"doi\":\"10.1145/1450135.1450183\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The combination of flit-buffer flow control methods and latency-insensitive protocols is an effective solution for networks-on-chip (NoC). Since they both rely on backpressure, the two techniques are easy to combine while offering complementary advantages: low complexity of router design and the ability to cope with long communication channels via automatic wire pipelining. We study various alternative implementations of this idea by considering the combination of three different types of flit-buffer flow control methods and two different classes of channel repeaters (based respectively on flip-flops and relay stations). We characterize the area and performance of the two most promising alternative implementations for NoCs by completing the RTL design and logic synthesis of the repeaters and routers for different channel parallelisms. Finally, we derive high-level abstractions of our circuit designs and we use them to perform system-level simulations under various scenarios for two distinct NoC topologies and various applications. Based on our comparative analysis and experimental results, we propose a NoC design approach that combines the reduction of the router queues to a minimum size with the distribution of flit buffering onto the channels. This approach provides precious flexibility during the physical design phase for many NoCs, particularly in those systems-on-chip that must be designed to meet a tight constraint on the target clock frequency.\",\"PeriodicalId\":300268,\"journal\":{\"name\":\"International Conference on Hardware/Software Codesign and System Synthesis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Hardware/Software Codesign and System Synthesis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1450135.1450183\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Hardware/Software Codesign and System Synthesis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1450135.1450183","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

摘要

将暂存缓冲流控制方法与时延不敏感协议相结合是实现片上网络(NoC)的有效方法。由于它们都依赖于背压,这两种技术很容易结合起来,同时具有互补的优势:路由器设计的复杂性低,能够通过自动有线管道处理长通信通道。我们通过考虑三种不同类型的切换缓冲流量控制方法和两种不同类型的信道中继器(分别基于触发器和中继站)的组合,研究了这种思想的各种替代实现。我们通过完成RTL设计和不同通道并行的中继器和路由器的逻辑合成,描述了两种最有前途的noc替代实现的面积和性能。最后,我们推导了我们的电路设计的高级抽象,并使用它们在两种不同的NoC拓扑和各种应用的各种场景下执行系统级仿真。基于我们的对比分析和实验结果,我们提出了一种NoC设计方法,该方法将路由器队列减少到最小尺寸并将flit缓冲分配到信道上。这种方法在物理设计阶段为许多noc提供了宝贵的灵活性,特别是在那些必须设计以满足目标时钟频率严格限制的片上系统中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Distributed flit-buffer flow control for networks-on-chip
The combination of flit-buffer flow control methods and latency-insensitive protocols is an effective solution for networks-on-chip (NoC). Since they both rely on backpressure, the two techniques are easy to combine while offering complementary advantages: low complexity of router design and the ability to cope with long communication channels via automatic wire pipelining. We study various alternative implementations of this idea by considering the combination of three different types of flit-buffer flow control methods and two different classes of channel repeaters (based respectively on flip-flops and relay stations). We characterize the area and performance of the two most promising alternative implementations for NoCs by completing the RTL design and logic synthesis of the repeaters and routers for different channel parallelisms. Finally, we derive high-level abstractions of our circuit designs and we use them to perform system-level simulations under various scenarios for two distinct NoC topologies and various applications. Based on our comparative analysis and experimental results, we propose a NoC design approach that combines the reduction of the router queues to a minimum size with the distribution of flit buffering onto the channels. This approach provides precious flexibility during the physical design phase for many NoCs, particularly in those systems-on-chip that must be designed to meet a tight constraint on the target clock frequency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信