{"title":"电子应用的中尺度沉积技术","authors":"M. Hedges, M. Renn, M. Kardos","doi":"10.1109/POLYTR.2005.1596486","DOIUrl":null,"url":null,"abstract":"The continual drive for smaller, more powerful and economic electronic systems, has led to the development of a new manufacturing technology, Maskless Mesoscale Materials Deposition (M3D). Without masks or resists, features down to 10 microns can be directly written in a wide variety of materials, including metals, ceramics, polymers and adhesives, on virtually any surface material - silicon, glass, polymers, metals and ceramics. For polymer substrates with a low temperature tolerance, M3D locally processes the deposition through a laser scanning process. The end result is a high-quality thin film with excellent edge definition and near-bulk electronic properties. As a CAD driven, additive manufacturing process, M3D provides significant environmental benefits and reduced processing requirements, eliminating the waste associated with traditional subtractive (e.g. mask and etch) processes. M3D can also precisely deposit materials on non-planar substrates. With no physical contact with the substrate by any portion of the tool other than the deposition stream, conformal writing is easily achieved. Other benefits include: • Time Compression and Increased Manufacturing Agility, • Lower Costs and • Better Product Designs. This paper will detail the benefits of M3D technology in creating mesoscale features for electronics assembly and semiconductor packaging applications. It will outline some of the current application areas including polymer deposition for electronics.","PeriodicalId":436133,"journal":{"name":"Polytronic 2005 - 5th International Conference on Polymers and Adhesives in Microelectronics and Photonics","volume":"201 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Mesoscale Deposition Technology for Electronics Applications\",\"authors\":\"M. Hedges, M. Renn, M. Kardos\",\"doi\":\"10.1109/POLYTR.2005.1596486\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The continual drive for smaller, more powerful and economic electronic systems, has led to the development of a new manufacturing technology, Maskless Mesoscale Materials Deposition (M3D). Without masks or resists, features down to 10 microns can be directly written in a wide variety of materials, including metals, ceramics, polymers and adhesives, on virtually any surface material - silicon, glass, polymers, metals and ceramics. For polymer substrates with a low temperature tolerance, M3D locally processes the deposition through a laser scanning process. The end result is a high-quality thin film with excellent edge definition and near-bulk electronic properties. As a CAD driven, additive manufacturing process, M3D provides significant environmental benefits and reduced processing requirements, eliminating the waste associated with traditional subtractive (e.g. mask and etch) processes. M3D can also precisely deposit materials on non-planar substrates. With no physical contact with the substrate by any portion of the tool other than the deposition stream, conformal writing is easily achieved. Other benefits include: • Time Compression and Increased Manufacturing Agility, • Lower Costs and • Better Product Designs. This paper will detail the benefits of M3D technology in creating mesoscale features for electronics assembly and semiconductor packaging applications. It will outline some of the current application areas including polymer deposition for electronics.\",\"PeriodicalId\":436133,\"journal\":{\"name\":\"Polytronic 2005 - 5th International Conference on Polymers and Adhesives in Microelectronics and Photonics\",\"volume\":\"201 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polytronic 2005 - 5th International Conference on Polymers and Adhesives in Microelectronics and Photonics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/POLYTR.2005.1596486\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polytronic 2005 - 5th International Conference on Polymers and Adhesives in Microelectronics and Photonics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/POLYTR.2005.1596486","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Mesoscale Deposition Technology for Electronics Applications
The continual drive for smaller, more powerful and economic electronic systems, has led to the development of a new manufacturing technology, Maskless Mesoscale Materials Deposition (M3D). Without masks or resists, features down to 10 microns can be directly written in a wide variety of materials, including metals, ceramics, polymers and adhesives, on virtually any surface material - silicon, glass, polymers, metals and ceramics. For polymer substrates with a low temperature tolerance, M3D locally processes the deposition through a laser scanning process. The end result is a high-quality thin film with excellent edge definition and near-bulk electronic properties. As a CAD driven, additive manufacturing process, M3D provides significant environmental benefits and reduced processing requirements, eliminating the waste associated with traditional subtractive (e.g. mask and etch) processes. M3D can also precisely deposit materials on non-planar substrates. With no physical contact with the substrate by any portion of the tool other than the deposition stream, conformal writing is easily achieved. Other benefits include: • Time Compression and Increased Manufacturing Agility, • Lower Costs and • Better Product Designs. This paper will detail the benefits of M3D technology in creating mesoscale features for electronics assembly and semiconductor packaging applications. It will outline some of the current application areas including polymer deposition for electronics.