{"title":"基于协方差矩阵自适应的实验概率分布质谱参数调谐","authors":"Marisa M. Gioioso, Akshay Kurmi","doi":"10.1109/CASE49439.2021.9551448","DOIUrl":null,"url":null,"abstract":"The operation of a mass spectrometry instrument, used in analytical chemistry, for custom applications requires the careful tuning of several instrument settings by an expert. In this work, we developed a model that allows the instrument to tune itself. The approach employs a fast, adaptive evolutionary algorithm, the Covariance Matrix Adaptation evolutionary strategy, to tune a mass spectrometry instrument. By developing a scheme for normalizing the values of the outcome variables (resolution, intensity and peak shape of a calibrant peak signal) based on their experimental probability distributions, we combined the outcomes into a single score that was used as the fitness score for the search algorithm. This approach resulted in a more thorough examination of the search space, and in an economical amount of time by being adaptive, resulting in a more stable tuning, no matter the initial state of the settings involved.","PeriodicalId":232083,"journal":{"name":"2021 IEEE 17th International Conference on Automation Science and Engineering (CASE)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Covariance matrix adaptation based tuning of mass spectrometry parameters using experimental probability distributions\",\"authors\":\"Marisa M. Gioioso, Akshay Kurmi\",\"doi\":\"10.1109/CASE49439.2021.9551448\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The operation of a mass spectrometry instrument, used in analytical chemistry, for custom applications requires the careful tuning of several instrument settings by an expert. In this work, we developed a model that allows the instrument to tune itself. The approach employs a fast, adaptive evolutionary algorithm, the Covariance Matrix Adaptation evolutionary strategy, to tune a mass spectrometry instrument. By developing a scheme for normalizing the values of the outcome variables (resolution, intensity and peak shape of a calibrant peak signal) based on their experimental probability distributions, we combined the outcomes into a single score that was used as the fitness score for the search algorithm. This approach resulted in a more thorough examination of the search space, and in an economical amount of time by being adaptive, resulting in a more stable tuning, no matter the initial state of the settings involved.\",\"PeriodicalId\":232083,\"journal\":{\"name\":\"2021 IEEE 17th International Conference on Automation Science and Engineering (CASE)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 17th International Conference on Automation Science and Engineering (CASE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CASE49439.2021.9551448\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 17th International Conference on Automation Science and Engineering (CASE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CASE49439.2021.9551448","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Covariance matrix adaptation based tuning of mass spectrometry parameters using experimental probability distributions
The operation of a mass spectrometry instrument, used in analytical chemistry, for custom applications requires the careful tuning of several instrument settings by an expert. In this work, we developed a model that allows the instrument to tune itself. The approach employs a fast, adaptive evolutionary algorithm, the Covariance Matrix Adaptation evolutionary strategy, to tune a mass spectrometry instrument. By developing a scheme for normalizing the values of the outcome variables (resolution, intensity and peak shape of a calibrant peak signal) based on their experimental probability distributions, we combined the outcomes into a single score that was used as the fitness score for the search algorithm. This approach resulted in a more thorough examination of the search space, and in an economical amount of time by being adaptive, resulting in a more stable tuning, no matter the initial state of the settings involved.