预测Reddit上的抑郁和焦虑:多任务学习方法

Shailik Sarkar, Abdulaziz Alhamadani, Lulwah Alkulaib, Chang-Tien Lu
{"title":"预测Reddit上的抑郁和焦虑:多任务学习方法","authors":"Shailik Sarkar, Abdulaziz Alhamadani, Lulwah Alkulaib, Chang-Tien Lu","doi":"10.1109/ASONAM55673.2022.10068655","DOIUrl":null,"url":null,"abstract":"One of the strongest indicators of a mental health crisis is how people interact with each other or express them-selves. Hence, social media is an ideal source to extract user-level information about the language used to express personal feelings. In the wake of the ever-increasing mental health crisis in the United States, it is imperative to analyze the general well-being of a population and investigate how their public social media posts can be used to detect different underlying mental health conditions. For that purpose, we propose a study that collects posts from “reddits” related to different mental health topics to detect the type of the post and the nature of the mental health issues that correlate to the post. The task of detecting mental health related issues indicates the mental health conditions connected to the posts. To achieve this, we develop a multi-task learning model that leverages, for each post, both the latent embedding space of words and topics for prediction with a message passing mechanism enabling the sharing of information for related tasks. We train the model through an active learning approach in order to tackle the lack of standardized fine-grained label data for this specific task.","PeriodicalId":423113,"journal":{"name":"2022 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Predicting Depression and Anxiety on Reddit: a Multi-task Learning Approach\",\"authors\":\"Shailik Sarkar, Abdulaziz Alhamadani, Lulwah Alkulaib, Chang-Tien Lu\",\"doi\":\"10.1109/ASONAM55673.2022.10068655\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One of the strongest indicators of a mental health crisis is how people interact with each other or express them-selves. Hence, social media is an ideal source to extract user-level information about the language used to express personal feelings. In the wake of the ever-increasing mental health crisis in the United States, it is imperative to analyze the general well-being of a population and investigate how their public social media posts can be used to detect different underlying mental health conditions. For that purpose, we propose a study that collects posts from “reddits” related to different mental health topics to detect the type of the post and the nature of the mental health issues that correlate to the post. The task of detecting mental health related issues indicates the mental health conditions connected to the posts. To achieve this, we develop a multi-task learning model that leverages, for each post, both the latent embedding space of words and topics for prediction with a message passing mechanism enabling the sharing of information for related tasks. We train the model through an active learning approach in order to tackle the lack of standardized fine-grained label data for this specific task.\",\"PeriodicalId\":423113,\"journal\":{\"name\":\"2022 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASONAM55673.2022.10068655\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASONAM55673.2022.10068655","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

心理健康危机最有力的指标之一是人们如何与他人互动或表达自己。因此,社交媒体是提取用于表达个人情感的语言的用户级信息的理想来源。在美国日益严重的心理健康危机之后,有必要分析人口的总体健康状况,并研究如何利用他们的公共社交媒体帖子来检测不同的潜在心理健康状况。为此,我们提出了一项研究,从“reddit”上收集与不同心理健康主题相关的帖子,以检测帖子的类型以及与帖子相关的心理健康问题的性质。发现与心理健康有关的问题的任务表明与这些岗位有关的心理健康状况。为了实现这一目标,我们开发了一个多任务学习模型,该模型利用每个帖子的潜在嵌入空间和主题进行预测,并通过消息传递机制实现相关任务的信息共享。我们通过主动学习方法训练模型,以解决缺乏标准化细粒度标签数据的特定任务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predicting Depression and Anxiety on Reddit: a Multi-task Learning Approach
One of the strongest indicators of a mental health crisis is how people interact with each other or express them-selves. Hence, social media is an ideal source to extract user-level information about the language used to express personal feelings. In the wake of the ever-increasing mental health crisis in the United States, it is imperative to analyze the general well-being of a population and investigate how their public social media posts can be used to detect different underlying mental health conditions. For that purpose, we propose a study that collects posts from “reddits” related to different mental health topics to detect the type of the post and the nature of the mental health issues that correlate to the post. The task of detecting mental health related issues indicates the mental health conditions connected to the posts. To achieve this, we develop a multi-task learning model that leverages, for each post, both the latent embedding space of words and topics for prediction with a message passing mechanism enabling the sharing of information for related tasks. We train the model through an active learning approach in order to tackle the lack of standardized fine-grained label data for this specific task.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信