一种预测人类对图形布局偏好的机器学习方法*

Shijun Cai, Seok-Hee Hong, Jialiang Shen, Tongliang Liu
{"title":"一种预测人类对图形布局偏好的机器学习方法*","authors":"Shijun Cai, Seok-Hee Hong, Jialiang Shen, Tongliang Liu","doi":"10.1109/PacificVis52677.2021.00009","DOIUrl":null,"url":null,"abstract":"Understanding what graph layout human prefer and why they prefer such graph layout is significant and challenging due to the highly complex visual perception and cognition system in human brain. In this paper, we present the first machine learning approach for predicting human preference for graph layouts.In general, the data sets with human preference labels are limited and insufficient for training deep networks. To address this, we train our deep learning model by employing the transfer learning method, e.g., exploiting the quality metrics, such as shape-based metrics, edge crossing and stress, which are shown to be correlated to human preference on graph layouts. Experimental results using the ground truth human preference data sets show that our model can successfully predict human preference for graph layouts. To our best knowledge, this is the first approach for predicting qualitative evaluation of graph layouts using human preference experiment data.","PeriodicalId":199565,"journal":{"name":"2021 IEEE 14th Pacific Visualization Symposium (PacificVis)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Machine Learning Approach for Predicting Human Preference for Graph Layouts*\",\"authors\":\"Shijun Cai, Seok-Hee Hong, Jialiang Shen, Tongliang Liu\",\"doi\":\"10.1109/PacificVis52677.2021.00009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Understanding what graph layout human prefer and why they prefer such graph layout is significant and challenging due to the highly complex visual perception and cognition system in human brain. In this paper, we present the first machine learning approach for predicting human preference for graph layouts.In general, the data sets with human preference labels are limited and insufficient for training deep networks. To address this, we train our deep learning model by employing the transfer learning method, e.g., exploiting the quality metrics, such as shape-based metrics, edge crossing and stress, which are shown to be correlated to human preference on graph layouts. Experimental results using the ground truth human preference data sets show that our model can successfully predict human preference for graph layouts. To our best knowledge, this is the first approach for predicting qualitative evaluation of graph layouts using human preference experiment data.\",\"PeriodicalId\":199565,\"journal\":{\"name\":\"2021 IEEE 14th Pacific Visualization Symposium (PacificVis)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 14th Pacific Visualization Symposium (PacificVis)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PacificVis52677.2021.00009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 14th Pacific Visualization Symposium (PacificVis)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PacificVis52677.2021.00009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

由于人类大脑中高度复杂的视觉感知和认知系统,理解人类喜欢什么样的图形布局以及为什么喜欢这样的图形布局是非常重要和具有挑战性的。在本文中,我们提出了第一种用于预测人类对图形布局偏好的机器学习方法。一般来说,具有人类偏好标签的数据集是有限的,不足以用于训练深度网络。为了解决这个问题,我们采用迁移学习方法来训练我们的深度学习模型,例如,利用质量指标,如基于形状的指标,边缘交叉和应力,这些指标被证明与人类对图形布局的偏好相关。使用真实人类偏好数据集的实验结果表明,我们的模型可以成功地预测人类对图形布局的偏好。据我们所知,这是第一个使用人类偏好实验数据预测图形布局定性评价的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Machine Learning Approach for Predicting Human Preference for Graph Layouts*
Understanding what graph layout human prefer and why they prefer such graph layout is significant and challenging due to the highly complex visual perception and cognition system in human brain. In this paper, we present the first machine learning approach for predicting human preference for graph layouts.In general, the data sets with human preference labels are limited and insufficient for training deep networks. To address this, we train our deep learning model by employing the transfer learning method, e.g., exploiting the quality metrics, such as shape-based metrics, edge crossing and stress, which are shown to be correlated to human preference on graph layouts. Experimental results using the ground truth human preference data sets show that our model can successfully predict human preference for graph layouts. To our best knowledge, this is the first approach for predicting qualitative evaluation of graph layouts using human preference experiment data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信