分类智能物联网设备运行机器学习算法

Aluizio F. Rocha Neto, Bárbara Soares, Felipe Barbalho, L. Santos, T. Batista, Flávia Coimbra Delicato, Paulo F. Pires
{"title":"分类智能物联网设备运行机器学习算法","authors":"Aluizio F. Rocha Neto, Bárbara Soares, Felipe Barbalho, L. Santos, T. Batista, Flávia Coimbra Delicato, Paulo F. Pires","doi":"10.5753/SEMISH.2018.3429","DOIUrl":null,"url":null,"abstract":"Tiny computers called System-on-a-Chip like Raspberry Pi have revolutionized the development of applications for Smart Home and Smart City. Some Machine Learning algorithms have been used to process a large amount of data produced by these Internet of Things (IoT) devices. An important issue in the context of processing IoT data is the decision on where the machine learning algorithm will run. To support this decision, it is necessary to classify the IoT devices according to their capabilities to run these algorithms, in terms of CPU performance, required memory, and energy demand. The aim of this paper is to classify IoT devices according to their capabilities to run machine learning algorithms, and reporting real experiments that validate the proposed classification.","PeriodicalId":428524,"journal":{"name":"Anais do Seminário Integrado de Software e Hardware (SEMISH)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Classifying Smart IoT Devices for Running Machine Learning Algorithms\",\"authors\":\"Aluizio F. Rocha Neto, Bárbara Soares, Felipe Barbalho, L. Santos, T. Batista, Flávia Coimbra Delicato, Paulo F. Pires\",\"doi\":\"10.5753/SEMISH.2018.3429\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tiny computers called System-on-a-Chip like Raspberry Pi have revolutionized the development of applications for Smart Home and Smart City. Some Machine Learning algorithms have been used to process a large amount of data produced by these Internet of Things (IoT) devices. An important issue in the context of processing IoT data is the decision on where the machine learning algorithm will run. To support this decision, it is necessary to classify the IoT devices according to their capabilities to run these algorithms, in terms of CPU performance, required memory, and energy demand. The aim of this paper is to classify IoT devices according to their capabilities to run machine learning algorithms, and reporting real experiments that validate the proposed classification.\",\"PeriodicalId\":428524,\"journal\":{\"name\":\"Anais do Seminário Integrado de Software e Hardware (SEMISH)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anais do Seminário Integrado de Software e Hardware (SEMISH)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5753/SEMISH.2018.3429\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do Seminário Integrado de Software e Hardware (SEMISH)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/SEMISH.2018.3429","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

像树莓派(Raspberry Pi)这样的芯片系统(System-on-a-Chip)微型计算机彻底改变了智能家居和智能城市的应用开发。一些机器学习算法已被用于处理这些物联网(IoT)设备产生的大量数据。在处理物联网数据的背景下,一个重要的问题是决定机器学习算法将在哪里运行。为了支持这一决策,有必要根据运行这些算法的能力对物联网设备进行分类,包括CPU性能、所需内存和能源需求。本文的目的是根据物联网设备运行机器学习算法的能力对其进行分类,并报告验证所提出分类的真实实验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Classifying Smart IoT Devices for Running Machine Learning Algorithms
Tiny computers called System-on-a-Chip like Raspberry Pi have revolutionized the development of applications for Smart Home and Smart City. Some Machine Learning algorithms have been used to process a large amount of data produced by these Internet of Things (IoT) devices. An important issue in the context of processing IoT data is the decision on where the machine learning algorithm will run. To support this decision, it is necessary to classify the IoT devices according to their capabilities to run these algorithms, in terms of CPU performance, required memory, and energy demand. The aim of this paper is to classify IoT devices according to their capabilities to run machine learning algorithms, and reporting real experiments that validate the proposed classification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信