利用线性规划的高效数据驱动分布鲁棒MPC

Zhengang Zhong, E. A. Rio-Chanona, Panagiotis Petsagkourakis
{"title":"利用线性规划的高效数据驱动分布鲁棒MPC","authors":"Zhengang Zhong, E. A. Rio-Chanona, Panagiotis Petsagkourakis","doi":"10.23919/ACC55779.2023.10156224","DOIUrl":null,"url":null,"abstract":"This paper presents a distributionally robust data-driven model predictive control (MPC) framework for discrete-time linear systems with additive disturbances, while assuming the distribution is only partially known through samples. The corresponding optimal control problem considers a distributionally robust (DR) objective over an ambiguity set of estimated disturbance expectations. A statistical learning bound is provided to validate the ambiguity set. For this control problem, polytopic hard input constraints and state chance constraints are considered. State chance constraints are formulated into linear deterministic constraints through solving a DR optimization problem with Wasserstein ambiguity set. The resulting optimal control problem can be equivalently solved by a linear program. We prove recursive feasibility and provide an average asymptotic cost bound for the corresponding MPC framework. The method is compared, demonstrated and analysed on a mass spring control example.","PeriodicalId":397401,"journal":{"name":"2023 American Control Conference (ACC)","volume":"147 11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"An efficient data-driven distributionally robust MPC leveraging linear programming\",\"authors\":\"Zhengang Zhong, E. A. Rio-Chanona, Panagiotis Petsagkourakis\",\"doi\":\"10.23919/ACC55779.2023.10156224\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a distributionally robust data-driven model predictive control (MPC) framework for discrete-time linear systems with additive disturbances, while assuming the distribution is only partially known through samples. The corresponding optimal control problem considers a distributionally robust (DR) objective over an ambiguity set of estimated disturbance expectations. A statistical learning bound is provided to validate the ambiguity set. For this control problem, polytopic hard input constraints and state chance constraints are considered. State chance constraints are formulated into linear deterministic constraints through solving a DR optimization problem with Wasserstein ambiguity set. The resulting optimal control problem can be equivalently solved by a linear program. We prove recursive feasibility and provide an average asymptotic cost bound for the corresponding MPC framework. The method is compared, demonstrated and analysed on a mass spring control example.\",\"PeriodicalId\":397401,\"journal\":{\"name\":\"2023 American Control Conference (ACC)\",\"volume\":\"147 11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 American Control Conference (ACC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/ACC55779.2023.10156224\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 American Control Conference (ACC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ACC55779.2023.10156224","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种具有加性扰动的离散线性系统的分布鲁棒数据驱动模型预测控制(MPC)框架,假设该系统的分布仅通过样本部分已知。相应的最优控制问题考虑一个分布鲁棒(DR)目标在一组模糊的估计干扰期望上。提供了一个统计学习界来验证歧义集。针对该控制问题,考虑了多面体硬输入约束和状态机会约束。通过求解具有Wasserstein模糊集的DR优化问题,将状态机会约束转化为线性确定性约束。由此产生的最优控制问题可以用线性规划等效地求解。我们证明了递归的可行性,并给出了相应的MPC框架的平均渐近代价界。通过一个质量弹簧控制实例对该方法进行了比较、论证和分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An efficient data-driven distributionally robust MPC leveraging linear programming
This paper presents a distributionally robust data-driven model predictive control (MPC) framework for discrete-time linear systems with additive disturbances, while assuming the distribution is only partially known through samples. The corresponding optimal control problem considers a distributionally robust (DR) objective over an ambiguity set of estimated disturbance expectations. A statistical learning bound is provided to validate the ambiguity set. For this control problem, polytopic hard input constraints and state chance constraints are considered. State chance constraints are formulated into linear deterministic constraints through solving a DR optimization problem with Wasserstein ambiguity set. The resulting optimal control problem can be equivalently solved by a linear program. We prove recursive feasibility and provide an average asymptotic cost bound for the corresponding MPC framework. The method is compared, demonstrated and analysed on a mass spring control example.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信