摘要:无线网络中基于深度学习的视频信息按需检索

Zongqing Lu, Noor Felemban, K. Chan, T. L. La Porta
{"title":"摘要:无线网络中基于深度学习的视频信息按需检索","authors":"Zongqing Lu, Noor Felemban, K. Chan, T. L. La Porta","doi":"10.1145/3054977.3057296","DOIUrl":null,"url":null,"abstract":"Mobile devices with cameras have greatly assisted in the prevalence of online videos. Valuable information may be retrieved from videos for various purposes. While deep learning enables automatic information retrieval from videos, it is a demanding task for mobile devices despite recent advances in their computational capability. Given a network consisting of mobile devices and a video-cloud, mobile devices may be able to upload videos to the video-cloud, a platform more computationally capable to process videos. However, due to network constraints, once a query initiates a video processing task of a specific interest, most videos will not likely have been uploaded to the video-cloud, especially when the query is about a recent event. We designed and implemented a distributed system for video processing using deep learning across a wireless network, where network devices answer queries by retrieving information from videos stored across the network and reduce query response time by computation offload from mobile devices to the video-cloud.","PeriodicalId":179120,"journal":{"name":"2017 IEEE/ACM Second International Conference on Internet-of-Things Design and Implementation (IoTDI)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Demo Abstract: On-Demand Information Retrieval from Videos Using Deep Learning in Wireless Networks\",\"authors\":\"Zongqing Lu, Noor Felemban, K. Chan, T. L. La Porta\",\"doi\":\"10.1145/3054977.3057296\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mobile devices with cameras have greatly assisted in the prevalence of online videos. Valuable information may be retrieved from videos for various purposes. While deep learning enables automatic information retrieval from videos, it is a demanding task for mobile devices despite recent advances in their computational capability. Given a network consisting of mobile devices and a video-cloud, mobile devices may be able to upload videos to the video-cloud, a platform more computationally capable to process videos. However, due to network constraints, once a query initiates a video processing task of a specific interest, most videos will not likely have been uploaded to the video-cloud, especially when the query is about a recent event. We designed and implemented a distributed system for video processing using deep learning across a wireless network, where network devices answer queries by retrieving information from videos stored across the network and reduce query response time by computation offload from mobile devices to the video-cloud.\",\"PeriodicalId\":179120,\"journal\":{\"name\":\"2017 IEEE/ACM Second International Conference on Internet-of-Things Design and Implementation (IoTDI)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE/ACM Second International Conference on Internet-of-Things Design and Implementation (IoTDI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3054977.3057296\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE/ACM Second International Conference on Internet-of-Things Design and Implementation (IoTDI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3054977.3057296","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

带有摄像头的移动设备极大地促进了在线视频的普及。出于各种目的,可以从视频中检索有价值的信息。虽然深度学习可以从视频中自动检索信息,但尽管移动设备的计算能力最近有所进步,但对于移动设备来说,这是一项艰巨的任务。给定一个由移动设备和视频云组成的网络,移动设备可能能够将视频上传到视频云,视频云是一个计算能力更强的平台,可以处理视频。然而,由于网络的限制,一旦查询启动了一个特定兴趣的视频处理任务,大多数视频不太可能被上传到视频云,特别是当查询是关于最近的事件时。我们设计并实现了一个使用无线网络深度学习的分布式视频处理系统,其中网络设备通过从存储在网络上的视频中检索信息来回答查询,并通过将计算从移动设备卸载到视频云来减少查询响应时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Demo Abstract: On-Demand Information Retrieval from Videos Using Deep Learning in Wireless Networks
Mobile devices with cameras have greatly assisted in the prevalence of online videos. Valuable information may be retrieved from videos for various purposes. While deep learning enables automatic information retrieval from videos, it is a demanding task for mobile devices despite recent advances in their computational capability. Given a network consisting of mobile devices and a video-cloud, mobile devices may be able to upload videos to the video-cloud, a platform more computationally capable to process videos. However, due to network constraints, once a query initiates a video processing task of a specific interest, most videos will not likely have been uploaded to the video-cloud, especially when the query is about a recent event. We designed and implemented a distributed system for video processing using deep learning across a wireless network, where network devices answer queries by retrieving information from videos stored across the network and reduce query response time by computation offload from mobile devices to the video-cloud.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信