{"title":"研究基于深度学习的语音活动检测的重要时间调制","authors":"Tyler Vuong, Nikhil Madaan, Rohan Panda, R. Stern","doi":"10.1109/SLT54892.2023.10022462","DOIUrl":null,"url":null,"abstract":"We describe a learnable modulation spectrogram feature for speech activity detection (SAD). Modulation features capture the temporal dynamics of each frequency subband. We compute learnable modulation spectrogram features by first calculating the log-mel spectrogram. Next, we filter each frequency subband with a bandpass filter that contains a learnable center frequency. The resulting SAD system was evaluated on the Fearless Steps Phase-04 SAD challenge. Experimental results showed that temporal modulations around the 4–6 Hz range are crucial for deep-learning-based SAD. These experimental results align with previous studies that found slow temporal modulation to be most important for speech-processing tasks and speech intelligibility. Additionally, we found that the learnable modulation spectrogram feature outperforms both the standard log-mel and fixed modulation spectrogram features on the Fearless Steps Phase-04 SAD test set.","PeriodicalId":352002,"journal":{"name":"2022 IEEE Spoken Language Technology Workshop (SLT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Investigating the Important Temporal Modulations for Deep-Learning-Based Speech Activity Detection\",\"authors\":\"Tyler Vuong, Nikhil Madaan, Rohan Panda, R. Stern\",\"doi\":\"10.1109/SLT54892.2023.10022462\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We describe a learnable modulation spectrogram feature for speech activity detection (SAD). Modulation features capture the temporal dynamics of each frequency subband. We compute learnable modulation spectrogram features by first calculating the log-mel spectrogram. Next, we filter each frequency subband with a bandpass filter that contains a learnable center frequency. The resulting SAD system was evaluated on the Fearless Steps Phase-04 SAD challenge. Experimental results showed that temporal modulations around the 4–6 Hz range are crucial for deep-learning-based SAD. These experimental results align with previous studies that found slow temporal modulation to be most important for speech-processing tasks and speech intelligibility. Additionally, we found that the learnable modulation spectrogram feature outperforms both the standard log-mel and fixed modulation spectrogram features on the Fearless Steps Phase-04 SAD test set.\",\"PeriodicalId\":352002,\"journal\":{\"name\":\"2022 IEEE Spoken Language Technology Workshop (SLT)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE Spoken Language Technology Workshop (SLT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SLT54892.2023.10022462\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Spoken Language Technology Workshop (SLT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SLT54892.2023.10022462","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Investigating the Important Temporal Modulations for Deep-Learning-Based Speech Activity Detection
We describe a learnable modulation spectrogram feature for speech activity detection (SAD). Modulation features capture the temporal dynamics of each frequency subband. We compute learnable modulation spectrogram features by first calculating the log-mel spectrogram. Next, we filter each frequency subband with a bandpass filter that contains a learnable center frequency. The resulting SAD system was evaluated on the Fearless Steps Phase-04 SAD challenge. Experimental results showed that temporal modulations around the 4–6 Hz range are crucial for deep-learning-based SAD. These experimental results align with previous studies that found slow temporal modulation to be most important for speech-processing tasks and speech intelligibility. Additionally, we found that the learnable modulation spectrogram feature outperforms both the standard log-mel and fixed modulation spectrogram features on the Fearless Steps Phase-04 SAD test set.