Shan Lin, Bowen Liu, Yang Wen, Anum Masood, Bin Sheng, P. Li, Xin Liu, Haoyang Yu, Weiyao Lin
{"title":"基于参数敏感哈希的高效姿态机","authors":"Shan Lin, Bowen Liu, Yang Wen, Anum Masood, Bin Sheng, P. Li, Xin Liu, Haoyang Yu, Weiyao Lin","doi":"10.1109/PIC.2017.8359590","DOIUrl":null,"url":null,"abstract":"In this paper, we propose an efficient pose machine using Parameter-Sensitive Hashing(PSH) techniques. Based on the original pose machine, which is a sequential prediction framework, we employ the Convolutional Neural Network(CNN) to extract features. To handle the high dimensional feature vectors and conduct similarity search efficiently, we use the Parameter-Sensitive Hashing Function(PSHF) to map the feature vectors into binary values. The property of the PSHF ensures that the collisions happen when two vectors are near to each other and the search can be completed in a fractional power time. We apply our approach to the popular datasets including LSP and FLIC and make a comparison with previous methods based on a criterion of strict Percentage of Correct Parts(PCP). Experimental results reflect that our approach outperforms previous methods in accuracy.","PeriodicalId":370588,"journal":{"name":"2017 International Conference on Progress in Informatics and Computing (PIC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient pose machine based on parameter-sensitive hashing\",\"authors\":\"Shan Lin, Bowen Liu, Yang Wen, Anum Masood, Bin Sheng, P. Li, Xin Liu, Haoyang Yu, Weiyao Lin\",\"doi\":\"10.1109/PIC.2017.8359590\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose an efficient pose machine using Parameter-Sensitive Hashing(PSH) techniques. Based on the original pose machine, which is a sequential prediction framework, we employ the Convolutional Neural Network(CNN) to extract features. To handle the high dimensional feature vectors and conduct similarity search efficiently, we use the Parameter-Sensitive Hashing Function(PSHF) to map the feature vectors into binary values. The property of the PSHF ensures that the collisions happen when two vectors are near to each other and the search can be completed in a fractional power time. We apply our approach to the popular datasets including LSP and FLIC and make a comparison with previous methods based on a criterion of strict Percentage of Correct Parts(PCP). Experimental results reflect that our approach outperforms previous methods in accuracy.\",\"PeriodicalId\":370588,\"journal\":{\"name\":\"2017 International Conference on Progress in Informatics and Computing (PIC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Conference on Progress in Informatics and Computing (PIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PIC.2017.8359590\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Progress in Informatics and Computing (PIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PIC.2017.8359590","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Efficient pose machine based on parameter-sensitive hashing
In this paper, we propose an efficient pose machine using Parameter-Sensitive Hashing(PSH) techniques. Based on the original pose machine, which is a sequential prediction framework, we employ the Convolutional Neural Network(CNN) to extract features. To handle the high dimensional feature vectors and conduct similarity search efficiently, we use the Parameter-Sensitive Hashing Function(PSHF) to map the feature vectors into binary values. The property of the PSHF ensures that the collisions happen when two vectors are near to each other and the search can be completed in a fractional power time. We apply our approach to the popular datasets including LSP and FLIC and make a comparison with previous methods based on a criterion of strict Percentage of Correct Parts(PCP). Experimental results reflect that our approach outperforms previous methods in accuracy.